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Abstract: Density-weighted averaged derivative estimator gives a computationally convenient consistent and
asymptotically normally distributed (CAN) estimate of the parametric component of a semiparametric single
index model. This model includes some important parametric models as special cases such as linear
regression, Logit/Probit, Tobit and Box-Cox and other transformation models. First order asymptotic
properties of this estimator have been investigated in several papers for a variety of data generating processes.
This estimator involves a nonparametric kernel density estimate and thus it faces the problem of bandwidth
selection as is usual with kernel based nonparametric or semiparametric inference. Bandwidth selection is
practically an important problem and that minimizing the mean squared error (MSE) has been mainly studied
in various kernel estimation methods. It is certainly a desirable method for point estimation, however when
we are more interested in hypothesis testing or confidence interval estimation based on the asymptotic
normality, it may not be the best selection. An alternative method may be to choose it such that it minimizes
the normal approximation error. The author considered its global minimization in a previous joint paper. The
purpose of this paper is to propose a more desirable bandwidth for these purposes by minimizing the normal
approximation error only in the tail. We report the results of a Monte Carlo study comparing alternative
bandwidths based on a Tobit model.

Keywords: Semiparametric averaged derivatives; Higher order asymptotic theory; Minimum normal
approximation error; Bandwidth selection

1. INTRODUCTION nonparametric or semiparametric inference.
Bandwidth selection is practically an important
problem and that minimizing the mean squared
error (MSE) has been considered in various kernel
based estimation methods. It is certainly a suitable
method for point estimation, however when we are
more interested in hypothesis testing or confidence
interval estimation based on the asymptotic
normality, it may not be the best way. Nishiyama
and Robinson [2000] propose an optimal
bandwidth which globally minimizes the normal
approximation error for these purposes. However
there is a possibility that we can derive an even
more desirable one by locally minimizing the
approximation error. 'The idea is as follows. For
example, suppose we would like to perform a
two-sided significance test of size 5% on a
parameter. When we know the exact distribution of
the test statistic, we simply use its 2.5% and 97.5%
quantiles to determine the critical region, and they
obviously give the correct size. However, when it

Semiparametric single index model handles the
situation where mean response of a variable
conditional on a vector of other variables depends
on it only through its linear combination without
specifying the functional form of the underlying
distribution and regression function. This model
includes some special cases important in
econometrics such as linear regression, Tobit,
Logit/Probit and Box-Cox and  other
transformation models. Several semiparametric
estimators have been proposed for the parametric
component of the model by various authors.
Among them, the density-weighted averaged
derivative estimator considered by Powell et. al.
[1989] and Robinson [1989] is a practically
convenient CAN estimator because it has an
explicit formula and does mnot require any
numerical optimization, though this does not attain
the semiparametric efficiency bound.

This estimator involves a nonparametric kernel is unknown, we often use the asymptotic
density estimate and thus it faces the problem of distribution instead. Suppose it is the standard
bandwidth selection as is usual with kernel based normal distribution. Then we take its 2.5% and
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97.5% quantiles to construct the critical region, but
the corresponding empirical size is not necessarily
5%. Whether the size distortion is small or not
depends only on how close the quantiles of the
exact distribution are to those of the normal, not
the global distance between the exact and the
asymptotic distributions. Therefore, we should pay
more attention to tail approximation rather than
global approximation. The purpose of this work is
to propose a new bandwidth choice suitable for
hypothesis testing and confidence interval
estimation for the density-weighted averaged
derivatives based on this idea. We compare the
small sample performance of the minimum MSE
bandwidth, one by Nishiyama and Robinson
[2000] and the new one proposed here by a Monte
Carlo study based on a Tobit model. The following
section briefly explains the semiparametric single
index model and its estimator. Section 3 reviews
bandwidth selection methods for this estimator.
Section 4 proposes a new bandwidth, while
Section 5 reports the results of a Monte Carlo
study.

2. SEMIPARAMETRIC SINGLE INDEX
MODEL
For a d x1variate X with density f(x)
and a scalar variateY , we suppose the regression
function g(X) =E(Y | X) is known to have

single index form

8§(X)=G(B"X)

where G:R—>R and d x1 vector 8 are

unknown and T denotes transposition. This is a
single index model and it is easily seen that
parametric models such as linear regression model,
Tobit model, Probit model and Box-Cox

transformation model are its special cases. B is
identifiable only up to scale so that we consider
estimation of B up to scale. Given an estimate of

B, G can be estimated by some nonparametric
method assuming certain smoothness condition.

Powell et.al. [1989], Robinson t1989] and
Cheng and Robinson [1994] propose to estimate

A =-E{G'(B"X)f OB,
a constant times S, where

G'(u)=dG(u)/du , by density-weighted
averaged derivatives

Tud

o)) 5 Spewe

given a sample (Y;,X[), i
positive constant decaying to zero as n —>
K:R* - R s a differentiable L-th order
kernel function and K'(u) =0K(u)/0u . In

case of independently and indentically distributed
(iid) observations, Powell et.al. [1989] prove

Ty, - -Y))
(1)

=1l..,n. his a

p_

and
U - D> NO.3)

where 2 =E[(u, - p)(p, -p)"] , with
=14 - g(X)}'(X)) - g'(X)f(Xy) -

They also provide a consistent estimator for the

. . -1/2
asymptotic variance X . The 7 d convergence

rate of this estimator was thought to be surprising
because it involves a nonparametric density
derivative estimate with a significantly slower

convergence rate than nV% . Robinson [1989]
and Cheng and Robinson [1994] investigate the
asymptotic properties of this estimator in the case
of weakly and long-range dependent observations

respectively, the former showing \/_ -
consistency and asymptotic normality, while the
latter proving the possibility of non-standard
asymptotic distribution.

Robinson [1995] obtains the Berry-Esseen
bound of the estimator for jid observations,

suggesting the possibility of O(n™"'*) bound
which prevails in parametric statistics. Nishiyama
and Robinson [2000, 2001] further validate
Edgeworth expansions for the estimator when

suitably normalized and studentized under certain
regularity conditions.

Some other semiparametric CAN estimators of
the parametric component in this model are
proposed by Stoker [1986], Hirdle and Stoker
[1989], Andrews [1991], Ichimura and Lee [1988],
Newey and Stoker [1993] and Ichimura [1993].

3. BANDWIDTH SELECTION METHODS

Bandwidth selection problem always arises in
kernel based nonparametric and semiparametric
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inference. A standard principle is the minimum
MSE bandwidth selection, while Nishiyama and
Robinson - [2000] propose a different way
minimizing the normal approximation error
primarily for the purposes of hypothesis testing
and confidence interval estimation.

3.1 Minimum Mean Squared Error Bandwidth
Selection

For (1), we may choose /1 , the bandwidth, such
that it minimizes the MSE,

hysg = arg mhinE{(U -u)U-mit.@

This principle appears to be favorable for the
purpose of point estimation. Minimum MSE
bandwidth is proposed by Hirdle and Tsybakov
[1993] for the density-weighted averaged
derivatives, and Powell and Stoker [1996] for
slightly more general statistics. They derive
leading terms of the MSE and minimize it with
respect to the bandwidth. In both- articles, it is
shown that the order of the optimal bandwidth is

O(n2/?1*4*D) The choice by (2) is infeasible
because the expectation is taken with respect to the

unknown distribution of (Y, X "), but the latter
authors also provide a feasible choice.

3.2 Minimum Normal Approximation Error
Bandwidth Selection

Minimum MSE bandwidth may not be
appealing when we are more interested in the
confidence interval estimation or hypothesis
testing based on the asymptotic normality. In terms
of the significance test, if the convergence rate to
the normal is not sufficiently fast and the normal
approximation is poor, it may cause a great size
distortion. The Monte Carlo simulation based on a
Tobit sample in Nishiyama and Robinson [2000]
show that the distribution function of the averaged
derivatives is not always well approximated by the
normal in small sample (n=100, 400) depending on
the bandwidth selection.

Nishiyama and Robinson [2000] propose to
determine the bandwidth such that the global
normal approximation error is minimized based on
an Edgeworth expansion for the studentized
estimator they established. Putting

F(2) =P (U -1) s 2),

where A is any d x1vector satisfying A'A =1

and &% is the jackknife estimator of the
asymptotic variance of A'(U -p) , they
validate an Edgeworth expansion

supsup | F(z) - F(2) |

A Al zeR 3)
=0(n—1/2 +n-lh-d—2 +n1/2hL)

where

KZ
nhd+2

{(2z% + 1)K, +3(z% + Dk, }], (4)

F(z) = ®(2) - ¢(2)[n"*h*k, - z

3n'/?

®(2) and ¢(z) are respectively the distribution
and density function of a standard normal variate,
and K;, i =1,2,3,4 are constants depending on
the underlying distribution (see Nishiyama and
Robinson [2000] for their definitions). Using this

Edgeworth expansion, they propose to choose the
bandwidth such that

min max | F(z)-®@(2)]. )

They focus on the case when
(d +2)/2 <L < 2(d + 2)under which the first
two correction terms in (4) dominate the third one,

taking into account that “too” large L tends to
make the estimator rather unstable for smaller
sample size. It is interesting that this saddle point
problem has a simple closed form solution

1/2(L+d +2)
B = @ +2)°«; -3/ 2Led+2)
ML +d +2)k}

(6)
They also provide strongly consistent estimates of
K;, i =1,2,3,4, for the feasible versions of (3)

and (4), which can be plugged in (6) for practical
use. It is straightforward to show that the

bandwidth minimizing the MSE of A'U , for any
d x1vector A, is

b = {(d + 2)x2}

2
Lk,

1/(2L+d +2)
n ~2/(2L+d +2) (7)

by Lemmas 1, 11 and 12 of Nishiyama and
[2000]. hyse > Py
asymptotically.

Robinson Therefore
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4. OPTIMAL BANDWIDTH SELECTION
MINIMIZING THE NORMAL
APPROXIMATION ERROR IN THE
TAIL '

The bandwidth selection (6) looks appealing and
practically applicable to confidence interval
estimation and hypothesis testing. The idea (5),
however, may not be ideal for these purposes.
Firstly, it only allows kernel order smaller than
2(d+2), when the bias may badly affect the
inference. Secondly, when we would like to
perform a two-sided significance test on a element
of { based on the asymptotic normality, for
instance, what we need is not the globally good
approximation but the good approximation in the
tail, or more precisely certain quantiles. This idea

leads to choose the bandwidth such that F(z) is

close to ®(z) at 100y % and 100(1-7y) %
quantiles of the standard normal distribution. One
way is to choose 4 such that

hye =argmin [{F(z,)-@(z,)}

+{F(Zl-y )-P(z, )}l !

where 2, is the 100y % quantile of ®(z).

®

PROPOSITION
(i) (8) has a unique solution satisfying

n Klth 2L+2d +4

—%{(2272 +1)ic; +3(z) + i Jut

n

K,z \’

—(—y) (d+2)=0. )]
(i) Putting

Q(h) =[{F(z,) - ®(z,)¥

+{F(z,,) - ®(, Y],

we have -

Qe ) < Qhyg) < Olhygr)
as n—> x,

The proof is omitted. It is notable that the order of
this optimal bandwidth choice must be of exact
3 : '

order n 2+*2 , which is the same as the one by

Nishiyama and Robinson [2000]. Therefore we

also have A, > h,, asymptotically.

Other ways could be considered, for instance,
min {| F(z,) - @(z,)|

+|F(z,.,) - @(z,.,) }-

This optimization problem, however, may be
inconvenient because the objective function
involves the absolute values and requires
numerical optimization, so that (8) looks more
favorable than this.

In the case of one-sided test, it may be better to
choose 4 such that, e.g.,

mhin {f(zy )-D(z,)),

but we concentrate only on (8) in this work
because this choice obviously does not suit
confidence interval estimation.

5. MONTE CARLO STUDY
5.1 Monte Carlo Design
Consider the Tobit model

Y=B'X+e)I(B’X +¢=20)

where X = (X,,X,)is bivariate and I(.) is the
indicator function. We took

(X7,e) ~N(0,1,), so that

g(x) = B x{1-D(-B"x)} + (- x)}
and & = —f3 /(87), thus it satisfies the single

index constraint. We set B = (L1)*. For the

estimator, we used the normal density based higher
order kernel in Robinson [1988] and employed
three values of L, L=4,8 and 10.

We compare the nominal size of a hypothesis
test with the empirical size to check out the size
distortion in small samples of n=100, 400. We test
for

Hy: i =-1/8r)
VeIsus
H,: B =-1/@8r)

based on the asymptotic normality of U ,
where (4, is the first element of U . We
implemented a Monte Carlo simulation of the
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above two-sided test of size 5% with 10,000
replications. We used the consistent estimates of

K; proposed by Nishiyama and Robinson [2000]

to compute Ay, By and Ay, . For general

comparison, we also implemented the simulation
for h=0.4,0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

5.2 Results

We first give the values of A ,Myy and

Ry in Table 1. hy, is reported only when

L=4 because it is justified only when (d+2)/L
<L<2(d+2). Comparing the third and fourth
columns, we see that the optimal bandwidths

Bysp Bz and By, are smaller for the larger
values of n in each of L=4, 8, 10. We also find that
hye is always larger than h,,; for fixed n

when L=8, 10, and A, >Ry > hyp when

L=4 . This is consistent with the discussion in the
end of the previous section. ’

Table 1. Optimal bandwidths

n=100 | n=400
P 0.64 | 058
L=4
h 059 | 051
NAE
B 0.51 0.44
P 105 | 084
L-8
h 092 | 079
NAE
By 108 | 093
L=10
h 098 | 081
NAE

Tables 2, 3 and 4 show the empirical size of the
test for each bandwidth and sample size
respectively for the cases of L=4, 8, 10. We found
in general that larger bandwidth yields larger
rejection probability. This is mainly because of the
bias. It is easily seen that the size distortion is
enormous when “too” large bandwidth is used. For
example, the case #=1.0 and n=400 in Table 2 is
the worst with the empirical size of 80%. The size
distortion looks relatively less devastating for
larger values of L(=8, 10) than the small L(=4) for

h=0.4-1.0.

Table 2. Empirical size, L=4
(Nominal size=5%)

H n=100 | n=400
0.4 1.75% | 3.13%
05 326% | 5.50%
0.6 552% | 9.05%
0.7 836% | 15.69%
0.8 | 13.24% |29.22%
09 [20.60% |52.41%
10 |32.81% |80.23%
Ross 6.94% | 8.51%
P 537% | 5.97%
B 351% | 4.15%

Table 3. Empirical size, L=8

(Nominal size=5%)

h n=100 | n=400
0.4 0.74% | 1.18%
0.5 133% | 2.01%
0.6 212% | 3.15%
0.7 295% | 4.08%
0.8 401% | 4.99%
09 | 501% | 591%
1.0 6.09% | 6.98%
Ros 723% | 5.71%
B 523% | 4.90%

hy; must be good for point estimation, but it

does not perform well for hypothesis testing.
When n=100, for instance, the empirical size is
6.94%, 7.23% and 13.01% for L=4, 8, 10
respectively. Typically it oversmoothes and the
bias significantly affects the empirical size
(Nishiyama and Robinson [2000] discuss that the
dominant higher order term in the Edgeworth

1271



expansion is the bias related term when A, is
used).

Table 4. Empirical size, L=10

(Nominal size=5%)

h n=100 n=400

0.4 0.81% 1.55%
0.5 1.35% 2.21%
0.6 2.23% 3.30%
0.7 3.24% 4.05%
0.8 4.12% 5.04%
0.9 5.50% 6.28%
1.0 7.13% 9.48%
13.01% 6.63%

7.04% 5.22%

Ry, on the other hand, seems to work quite
well for all combinations of (L) except
(L,1)=(10,100) and clearly better than A, . The

poor result when (L,n)=(10,100) may be partly
because the estimation is typically less stable when
higher order kernels are used. '
When L=4, we also computed the empirical size
under A1, . From this Monte Carlo study, Ay,

seems to be better than /,, when n=100, but it is
not clear for n=400. However, A, has an

advantage over A e that the former can be used
with any higher order kernel function, while the
latter allows only the kernel functions satisfying
L<2(d+2).

We conclude that the simulation results support
the use of hNAE for the hypothesis testing in the
sense that the empirical size is the closer to the
nominal size of the test than A, and that it

‘allows any kernel function unlike Ay, . It is

obvious that it also works well for confidence
interval estimation.
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