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Abstract: An attempt is made in the present study to understand the dynamics of streamflow in the western
United States from a nonlinear dynamical perspective. Monthly streamf{low data observed at 79 stations
across |1 States in the western United States are analyzed. A nonlinear prediction method with a local
approximation approach is employved. The method uses the concept of phase-space reconstruction to
represent the underlying dynamics, i.e. reconstruction of the single-dimensional (or variable) streamflow
series in a multi-dimensional phase-space. The analysis is carried out by categorizing the 79 stations into
three groups on the basis of the magnitude of streamflow, as: {1) low-flow stations, having mean
streamflow values less than 100 /s (2.382 m'/s); (2) high-flow stations, having mean streamflow values
more than 1000 ft'/s (23.82 m/s): and (3} medium-flow stations, having mean streamflow values between
100 ft'fs (2.382 m'/s) and 1000 ft'/s (23.82 m’/s). The local approximation prediction approach yields, in
general, reasonably good results for all these three categories, but the predictions for the low-flow stations
are found to be relatively better than that obtained for the high-flow and medium-flow stations.
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the tremendous variability observed in
streamflow (and other hydrological phenomena)

. INTRODUCTION

Understanding .streamflow _dynamics. constitutes
one of the most important problems in hydrology
and water resources, as the topic is of relevance
for the proper management of our water

large  number of  dominant  variables,
Consequently, a majority of the investigations
until now has employed the concept of a

Cin time and space is due to the influence ofa

resources. Streamflow dynamics is governed by
various physical mechanisms acting on a wide
range of temporal and spatial scales. For
instance, streamflow depends not only on the
distribution of rainfall in time and space, but also
on the type and the state of the basin, which, in
turn, depend on climatic condition, vegetation-
state, etc. Also, almost ail mechanisms involved
in the streamflow process present some degree of
nonlinearity. All these factors make the problem
of streamflow modeling non-trivial.

During the past few decades, a great deai of
research has been devoied to the formulation and
development of approaches and models to
understand streamflow dynamics, and significant
progress has been made. For several decades, a
common belief among hydrologists has been that

stochastic process for modeling the dynamics of
streamflow (and other hvdrological phenomena)
[e.g. Thomas and Fiering, 1962: Matalas, 1967;
Carlson et al, 1970; Delleur et al, 1976;
Obeysekara and Salas, 1986]. However, the last
decade, with the advent of deterministic chaos
theory and other nonlinear concepts, has seen a
significant shift in our approach to modeling the
dynamics of streamflow (and cother hydroiogical
phenomena), as il has become increasingly
realized that apparently irregular behavior could
be the outcome of simple deterministic systems
influenced by a few nonlinear interdependent
variables. Applications of the concept of chaos
theory towards improving cur understanding of
dynamics of streamflow (and other hvdrological
phenomena) have been on the rise [e.g
Rodriguez-lturbe ¢t al., 1989; Jayawardena and
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Lai. 1994 Porporate and Ridolfi, 1997: Liu et
al., 1998; Sivakumar et al, 1999, 2001a, b:
Sivakumar, 2000]. The outcomes of such studies
are encouraging, as reasonably good predictions
are achieved for hydrological phenomena, in
particular  streamflow [e.g.  Porporate  and
Ridolfi, 1997; Liu et al.. 199&; Sivakumar et al.,
2001b].

It is relevant to note, at this point, that both the
stochastic and chaotic approaches possess certain
important limitations that may hamper our ability
to accurately model the streamflow dynamics. In
view of such limitations, the appropriate
approach for modeling the tremendousiy variable
streamflow in time and space is system (or data)
dependent. Consequently, a general assessment
regarding whether one approach is better than the
other or vice-versa is difficult to provide. It must
be emphasized, however, that studies that have
emploved both approaches have revealed that the
chaotic approach was better than the stochastic
approach for the streamflow series analyzed [e.g.
Jayawardena and Lai, 1994; Jayawardena and
Gurung, 2000]. The author is not aware of any
studies that have reported the opposite situation.

Having said the above, this study is not intended
to.participate in.the continuing. debate on_the

2. STUDY AREA AND DATA

Iy this study., monthly streamtlow dynamics in
the western United States is studied using data
coliected over a period of 62 years (1932-1993)
at 79 stations. These stations are located over L
States, as follows: Arizona (A7) - 1 station,
Arizona/New Mexico (AZ/NM) - |, California
Cay - 21, Colorade (CGY - 2,
Colorado/Wyoming (CO/WY) - |, Idaho (1D) -
10, Montana (M7} - 5. New Mexico (NM) - 9,
Nevada (NV) - 2, Oregon (OR) - 9, Utah (UT) -
5, Washington {WA) - 12, and Wyoming (WY) -
. Table 1 presents the streamfiow stations State
wise (numbers arranged starting from 01),

Table 1. State wise streamflow stations.

{(identification of) appropriate approach for
streamflow modeling. Rather, it attempts to
investigate in detail the streamflow data at hand,
with-the premise-that either -of ~thesetwo
approaches could be appropriate for the problem,
though it employs the chactic approach. The

streamflow stigdied 15 the moHti Y stteanlow

observed at 79 stations spread threughout 11
States in the western United States. Though one
cannot deny that modeling streamflow dynamics
at high reselutions, such as daily, is crucial for
purposes like flood forecasting, the reasons for
considering the monthly streamflow data in the
present study are as follows: (1) The assessment
of the quantity {(and quality) of water availability
in a basin and, hence, its management for
efficient water supply is generally made over
tonger periods of time, such as months and years,
rather than at daily scale; and (2) Monthlv and
annual streamflow series are more related to
long-term climate as compared to that of the
daily series and, therefore, streamflow dynamics
at these scales may be used to establish
connections between chimate and streamflow.

State Station numbers
AZ 19
AZINM | 17
CA 24,27, 28,29, 30,31.32, 33, 34,
35,36,37,38,39,40,41, 42,43,
44,46, 47
Co 05,06
COMNWY- 04
iD 53, 34, 59, 64, 65, 66, 68, 69, 70,
oo T L o
MT (1,02, 03, 55, 56
NM 07, 08,09, 10, 11, 12, 13, 16, 18.
NV 25,26
OR 45,67,72,73.74,76,77, 78,79
uT 15,20,21,22.23
48,49, 50, 31,52, 57,58, 60, 61,
WA 62,63, 75
WY 4

Streamflow data in the US is commonly
expressed in “water years,” which commence in
October. The records used berein start in October
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1931 and end in September 1993 and are average
monthly streamflow (see Slack and Landwehr
[1992] and Pichota et al. [1997] for details).

The magnitude of the streamflow varies greatly
among the stations, due to both the different
climatic regions in the western US and the
different  drainage  basin  characteristics
assaciated with each streamflow station. Most of
the drainage basins are medium to small sized (<
1000 km®} and are located in middle to high
elevations (> 300 m). For the present analysis,
the 79 stations are grouped under three
categories based on the magnitude of
streamflow, as foilows: (1) low-flow stations,
having mean streamflow values less than 100
ft'/s (2.382 m'/s); (2) high-flow stations, having
mear values more than 1000 ft'/s (23.82 m'fs);
and (3) medium-flow stations, with mean values
between the above two. The number of stations
in each State falling under the three categories is
as follows: Low-flow: CA (8), CO (2), 1D {1},
NV (1), NM (6), and UT {2); Medium-flow: AZ
(1), AZ/NM (1), CA (10}, CO/WY (1}, 1D (4),
MT (1), NV (1), NM (3), OR (4), UT (3), WA
(1), WY (1); and High-flow: CA (3), [D (5), MO
(4), OR (5), WA (11). Table 2 presents the
station numbers and the total number of stations
falling in each of the above three categories,

Figures I{a} t¢ I(c) show the variation of
streamflow in three stations (nos. 28, 43, and 69)
representing the low, medium and high ilow
categories. respectively. These are located in
California, New Mexico and idaho, respectively.
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Table 2. Streamflow stations categorized based
on mean flow value.

_ ___S_tx_‘_ea_m_ﬂ_ow Stations
Low-flow 035, 06, 07, 08, 09, 10, 12,
Regime 13, 22, 23, 24, 26, 27, 28,

(Mean < 100 29, 32, 33, 36, 37, 65
ft'fs)* (Total: 20 stations)

Medium-flow 02,04, 11, 14, 15, 16, 17,

Regime 18, 19, 20, 21, 25, 30, 31.
(100 /s < 34, 35, 38, 39, 40, 41, 42,
Mean < 1000 43, 45, 48, 53, 54, 64, 67,

ft'/s)* 68, 78, 79
(Total; 31 stations)

High-flow 01, 03. 44, 406, 47, 49, 50,
Regime 51, 52, 35, 56, 537, 58, 49,
{(Mean > 1000 60, 61, 62, 63, 66, 69, 70,
/5y 71, 72, 73, 74, 75,76, 77
{Total: 28 stations)

# 1 ft3/s = 0.0238 m'/s.
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Figure 1. Streamflow series in the western US
representing {a) low-flow (sta. 28); (b} medium-
flow (sta. 43}; and (c) high-low (sta. 69).
(Units: 1 ft¥/s = 0.0238 m'/s).
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3. NONLINEAR LOCAL APROXIMATION
PREDICTION

In the nonlinear prediction method used in the
present study, the underlying dynamics of the
system under investigation is represented by
econstructing the phase-space. ie. embedding
the single-dimensional (streamflow) serjes. X, 1

= {2 .. N in a multi-dimeesional phase-
space "iCCOrdinf’ to:

= (X Xy X voos Xty o) ()
w here; A Nefm-1)7, m is the dimension

of the vector ¥, called as embedding dimension:
and 7 is a delay time {Packard e/ af, 1980
Takens, 1981}, A (correct) phase-space
reconstruction in a dimension m allows one to
interpret the undertying dynamics in the form of
an m-dimensional map f, that is,

=Y (2)
v\here ¥, and ¥, are vectors of dimension m,
describing the state of the system at times /
{eurrent  state} and j+7  (future state),
respectively. The problem then is to find an
appropriate expression for - (e.g. £).

There are several approaches for determining £
In this study, a local approximation approach
[¢.g. Farmer and Sidorowich, 1987] is emploved.
In this approach, the f domain is subdivided into

The nearest neighbor 1o 2, is ther found, and the
procedure is repeated o predict the subsequent
values. The prediction accuracy is evaluated
using the correlation coefficient (). The time
series plots are also used to choose the best
prediction resuits among a lfarge combination of
results achieved with  different embedding
dimensions.

The nonlinear local approximation method is
now employed for predicting the monthly
streamtlow dynamics at the above 79 stations.
The first 500 values in the series are used in the
phase-space reconstruction for predicting the
next 200 values. One-step ahead predictions are
made for phase-spaces reconstructed  with
embedding dimensions from 1 to 9.

Figures 2{a} to 2{c}, for instance, present a
comparison, using time series plots, of the
predicted and the observed streamflow values for
stations 28, 43. and 69 (representing the low,
medium and high flow stations, respectively).
The plots shown correspond to the best
predictiens obtained (i.e. when the time series is
reconstriucted in a  three-dimensional phase

many subsets (neighborhoods}, each of which
identifies some approximations 55, valid only in
that subset and, hence, in this way, the system
dynamics is represented step by step locally in
the phase-space. The identification of the sets in
which to subdivide the domain is done by fixing

a-metrie-|)- |l-andy given the starting point-¥;-from- -~

which the forecast is initiated, identifying
neighbors ¥/, p =7, 2, . k, with /' </, nearest
te Y, whmh constitute th(. set corresponding to
The local functions can then be built. which
t’ake each point in the neighborhood to the next
neighborhood: ¥/ to ¥,.”. The local map ),
which does this, is determined by a least squares
fit minimizing
ShY - EYIE G)
=1
In this study, the local maps are learned in the
form of local polynomials [e.g. Abarbanel
19961, and the predictions are made forward
from a new point Z, using these tocal maps. For
the new point Z,, the nearest neighbor in the
learning or waining set is found, which is
denated as ¥,. Then the evoiution of £, is found,
which is denoted as Z, and is given by
Z.l‘ = F.r,'(z.”j (4)

space). As can be seen, the predicted values are
in reasonable agreement with the observed ones.
except when the observed values are high. A
closer look at the. observed and predicted time
series  reveals that the local polynomial
prediction approach captures reasonably not only

~the-major-trends-but-also the minor fluctuations

in the streamflow, Similar resulis are achieved
also for the other stations (Figures not shown).

Table 3 presents a summary of the streamFflow
prediction results (correlation coefficient, 2}
achieved for the 79 stations. As can be seen, all
the stations. irrespective of the flow-regime.
have o wvalues higher than 0.70. Cut of 20
stations in the low-flow category, |1 stations
have p above 0.90. § stations have p between
0.80 and .90, and only one station has g iess
than 0.80. Out of 31 stations in the medium-flow
category, 18 stations have p above 0.90, 10
siations have p between 3.80 and 0.90, and only
3 stations have p less than 0.80. Of the 28
stations in the high-flow category, 5 stations
have o above 0.90, 21 stations have p between
0.80 and 0.90, and only 2 smations have o less
than (.80,
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The high o values and also the good agreement
in the time series plots between the observed and

Measured | predicted values indicate the suitability of the
~ 80 — — — - Predicted nonlinear local approximation method  for
= predicting the streamflow dynamics. The
& 60 reconstruction of the single variable (streamflow)
z series  in multi-dimensional phase-space  is.
% 40 therefore, found to be capable of capturing the
’é important features of the underlying dynamics.
@ 20
www Table 3. Results of nontinear prediction analysis.
O R i
0 20 ) 1o 150 0. Low-flow | Medium-flow High-flow
. Time (Monﬂ.]) . stations stations stations
(@
7000 Measured Sta. o Sta. P Sta. D
6000 o = Predicted: No. Ne. Ne.
" 5000
= 4000 05 | 0912 ) 02 | 0802 | 01 | 0.824
= 06 | 0.832 | 04 | 0921 | 03 | 0.773
g 2000 07 10862 | 11 | 0885 | 44 | 0.867
= 2000 08 | 0936 | 14 0.892 46 0.873
“ 1000 M 09 | 0927 | 15 | 0856 | 47 | 0.836
: ! 10 7 0877 | 16 | 0881 i 49 | 0.88%9
0 121 0.936| 170524156 |6.894
0 50 100 150 200 13 10889 | 18 | 0948 | 51 | 0.827
Time (Month)} : 22 0.888 19 0.939 52 0.904
T 23 0913 20 0.972 533 0.851
(&) 24108952V 0T0T T US6E | 6907
26 (0.947 25 0.956 37 0.801
2710952 1 30 | 0940 | 58 | 0.834
“Measured: oy 28 1 0951 | 31 | 0.964 | 59 | 0837
~ - - Predicted: 29 1 0.967 § 34 0.853 60 0.861
32 10905 | 38 0.922 61 0.836
33 1 0.841 | 38 0.924 62 0.888
36 | 0.939 | 36 0.976 63 (.885
37 1 0876 | 40 0.932 66 0.931
65 | 0.764 1 41 0.909 69 0.793
42 0.940 70 0.845
43 0.923 71 0.873
45 0.949 72 0.928
0 50 100 150 200 48 82]’3 7i 8~§75
. 33 . ‘ G060
Time (Month) 54| 0746 | 75 | 0.852
(c} 64 | 0959 | 76 | 0.894
67 0.866 77 0.857
Figure 2. Examples of comparisen between 58 0.757
observed and predicted streamflow representing 78 0.890
{a) tow-flow: (b) medium-flow; and (c) high- 79 0.912
flow stations.

(Units: 1 ft'/s = 0.0238 m’/s).
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5. SUMMARY AND CONCLUSIONS

A nonlinear dynamical approach was employed
to predict the streamflow dynamics in the
western United States. The approach was based
on the concept of phase-space reconstruction, i.e.
reconstruction of single-variable series in a
multi-dimensional phase-space to represent the
underlying dynamics, and a local approximation
method was used for making predictions.
Monthly streamflow data observed at 79 stations
spread over 11 States in the western US were
analyzed, by grouping the stations into three
categories, namely low, medium and high flow.
The local approximation method yielded good
results for streamflow from all the 79 stations,
but was found to perform better for the low-flow
staticns. The method captured both the major
trends and the minor fluctuations, The results
also revealed that, in most cases, the best resuits
were achieved when the series was reconstructed
in a three-dimensional phase-space, implying
that the streamflow dynamics could be understood
from a low dimensional chaotic perspective.
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