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Abstract: Conservation biologists are increasingly looking to quantitative tools to help them make decisions,
I discuss the perceptions and misconceptions that surround two sorts of quantitative approach widely used in
conservation biology: population viability analvsis and reserve system design.  The intent is that this
discussion allows users to perceive these tools in a more balanced way — as neither uscless nor the answer 10
all the world’s problems — but rather as generally useful tools in supporting conservation management
decisions, The difficulties that are experienced with respect (o applying quantitative methods in conservation
biology are no doubt cornmon fo their application to other disciplines where the majority of workers do not
have an extensive mathematicai background.
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1. INFRODUCTION al.. 2001b]. In most cases it relies on a suite of
weli-known  population  modelling  methods

Mathematics is playing a growing role in including Monte Carlo simulation, Leslie matrix

conservation biology as evidenced by the recent methods, Markov  chains  and  stochastic
book of chapters “Quantitative Methods for differential equations [Beissinger and Westphal,
Conservation Biclogy™ edited by Ferson and 1998]. While thesc population models have
Burgmian j2000]7 This  increasing role mifrors existed forumydecades, rooted T the paradigm

that the size of a population is determined by

similar changes i many other biological
birth, death, emigration and immigration, the

disciplines and it is associated with a certain

.............. amonunt. ol _pain.. That pain revolves around . idea of estimating extinction risk is relatively new

concerns, perceptions and uncertainty regarding [Shaffer. 1981].  The capacity ¢ ecstimale
quantitative  methods  expressed by less extinction risk over different time frames is an

~quantitatively - orientedecologists - and

environmental managers. This paper discusses
some of these issucs based on experience in the
application of two widely used quantitative tools;
Population Viability Analysis (PVA) and reserve
selection algorithms. Many of these concerns are
issues of communication and semantics. The
hope is that this paper will clarify some of these
confusions. [ suspect that our experience is more
broadly applicable to all quantilative scientists
working in ficlds that are traditionally less
quantitative.

2. POPULATION VIABILITY ANALYSIS
2.1 Backpround
Population viability analysis is a modelling tooi

that is used to estimatc extinction risks for
species, or populations of species {Possingham ¢t

appeating - concept for- conservation biologists;

with the potential to underpin endangered species
legislation and national programs for  the
management of endangered species. PVA models
have been used for:

= Assessing the viability of a population.
s Defermining minimum viable habitat areas,
» Ranking threatened species {ofien for funding

DUIPOSES).
= Making cndangered species management
decisions.

e Bringing together experts to discuss a species
within the confext of a comunon goal,

These diverse roles are summarised in Burgman
and Possingham [20001. The nse of PVA has
increased rapidly. A search of the Web of
Science using Population Viability Analysis as a
“topic word” shows the following trend in the



number of papers:  1990-3, 1995-22, 2000-39.
Despite this growing popularity practitioners
express considerable uncertainty and concern
about the validity and use of PVA,

1.2 PYA Models are Wrong

There is growing criticism of PV A models with
respect 1o their stated purpose of estimating the
risk of extingtion.  Indeed Ludwig [1999] and
Ficherg and Ellner {2000] have gone so far to say
that for most wild populations the magnitude of
uncertainty about the parameters needed in PVA
models is 50 great that our estimates of mean time
o extinction and probability of extinction are
untikely to be accurate for more than a few years
in to the future. This contrasis the conclusions of
Brook et al. 20001 who (ested the capacity of
sevaral PYA models to predict the fufure using
time series data on konown populations.  Coulson
et al. [2000], McCarthy cf al. [2001b] and others
have made strong, and different, arguments that
Brook et al’s [2000] optimistic claims are
unfounded leaving us with a modeling tool that,
al first sight. appears to have limited predictive
capacity. Given this recent Iiteraturc and
supporting comments at  an  international
conference on PVA in 1998 i is tempting to
dismiss PVA as genecrally useless, excepl in the
few circumstances where the available data is

e p il ot ai 1 ﬂb Othquai it}' q fldth{? Icngﬂl Gfﬁ (s

over which if has been gathered.

managers who read papers damning PVA as a
tool. that by invoking a subile change of question,
a tool that was relatively useless, becomes
essential.

2.3 Testing PVAs

We are often taught to belicve that all models
shouid be tested. and eventually rejected and
replaced. Those ccologists trained in the rigor of
null hypothesis testing are keen o take PVA
models and subject them to repeated fests until
they fail: this approach is misguided.

First the primary output of interest is risk of
extinction of a threatened species and since a
species only goes extinct once. iesting an
expeclation or probability distribution with one
data point, the extinction of that species, is siily.
Brook et al. [20001] tackled this probiem by using
the frst section of a time serics to predict the
second part of a time series. Lindenmayer et al
[2000} and McCarthy et al. [2001b] show how
data on species distribution in  fragmented
habitats provides a way of testing a spatially
explicit PVA. [n these papers we recognize tha
all models are wrong, s0 rejecting a modeling
approach is not useful  Instead we took the
approach that where our initial tests cxposed
some significant differences between predictions

and-data thenour tolewas torefine-feabtbrate)-the
model.  Unfortunately we can change a large
number of parameters and processes o fit a
complex model to small sets of data. We have

in PVA is for purposes 1-3 listed above. Each of
these purposes relies on an accurate assessment of

“extinction - risks o Purpose -3, facilitating

comrnunication and data sharing, clearfy does not
rely on accurate predictions of risk. We have also
found that the capacity to rank management
options, purpose 4, is robust with respect to
considerable  uncertainty  with  respect  fo
extincltion risk [Lindenmayer and Possingham.
1996f. The wutility of the approach 15 very context
dependent.  We now believe that the original
applications of PVA were probably flawed, as the
tool is unable to accurately answer the questions
posed. PVA is poor at predicting absolute risk
but does seem 10 be very good at determining the
best way to manage a threatened species. a
question which is probably equally, if not more,
important than assessing viability. From the
nerspective of the ecologist and wildlife manager
it is tempting to make the mistake of throwiag the
baby out with the bathwater. It can be
chalienging to convince ecologists and wildlife

relied or our intuition to come up with the best
plausible alternative model modifications. We

- seethe process of model testing and refinement-as-

iterative and never-ending, This is important for
applied population biology but does not sit well
with a more Popperian view of science [Hilborn
and Mange!, 1997]. The fact that intuition and
judgment are involved lcads some ecologists to
feel even less comfortable with PV A,

2.4 What if we Reject PVAS?

If we rush to reject PVA as & useful pursuit, either
through ifs incapacity lo accurately predict
gxtinction risk, or through our inability to test
and validate the models, it is prudent to ask
ourselves how to answer the guestions asked of
PVA by any other means? For example in the
case of chopsing management options, without a
PVA how can ithe best choice be made?
Ultimately to make a decision we need to kuow
how different management actions wili affect the



risk of extinction. In the absence of more formal
PVA we can only rely on our intuilion and
experience.  Intuition and experience can be
formalized. and indeed used to form the basis of
qualitative PVAs. Indeed it is not really 2
question of whether or not to do a PVA - you
have to - it is more a guestion of how formal you
wish to make the model that translates actions in
o outcomes.

A recent focus of PVA as part of a decision-
making process helps to put its role in perspective
[Possingham et al, 2001bl. If we acknowledge
that decisions need to be made, that actions must
be tied to outcomes. and that the process must be
transparent and justifiable. then we need a PVA
in some form or other. This focus on decision-
making leads us to our next example where the
decision involves how to make an effective and
efficient nature reserve system.

3. RESERVE SYSTEM DESIGN

Before discussing reserve system design et us
step back and think through the process of
making a decision.

3.1 Becision-Making in Conservation

In the broadest sense we can think of nature

the problem is as follows.

Let the total number of sites be m and the number
of different features (which may be species or
vegetation types) to be represented in the final
reserve system be #n The information about
whether or not a feature is found in a site is
contained in a site-by-feature Om X i) matrix A

whose elements a,, are

{i if feature j ocours in site
g

(1 otherwise

for i=L4L....omand j=L....m1,
Next, definc a controi variable, thai determines
whether or not a site is included in the reserve, as
the vector X with dimension m and elements X,
given by

i if site i is included in the reserve
i E= { 0 otherwise

fori=1..m.
With  these  definitions, the  minimum
representation problem is an explicit objective:

minimise Z x, {minimise the number
=}
of sites in the reserve system}
subject to a number of constraints:

Zauxr z1, for j=L....n fsubject to
i=1

.................................................. .. Deseribing the-way-the-system sorks .usi.n.g

conservation decisions  as  involving  thiree
components:
» Defining the problem,

each species being represented at least once}
where a,.x e {0.1}.

This....is..the _integer . lincar programsung ... ..

models.

» Using an algorithm to find good sotutions

“tothe problem.

These components are described in detail by
Possingham ¢t al. [2001a] in the context of
conservation biology. I have found that a major
challenge in delivering decision-support to
conservation biologists and managers is exposing
the role of each component. 1 use the case of
reserve  system  design, or more generally
ecoregional planning, to expose the differences
hetween the three quantitative components of
decision-making.

3.2 The Reserve System Design Problem

In a seminal paper Cocks and Baird [1989]
defined the minimum set reserve design problem
as one of representing all biodiversity features in
# region for gverall minimum cost. This notion
has become a baseline problem for reserve
selection methods. The simplest formulation of

formulation of the set-covering problem
{Possinghars et al,, 2000]. It is NP-Complete so

“that the difficulty “of "guaranteeing an optitnm

sclution increases exponentialiy with the number
of constraints #  For the kinds of practical
problems we have tackled where the number of
sites is more than 10,000 and the number of
features is in the hundreds, the number of
possible solutions is so vast that any hope of
finding an optimal solution can be discarded
[Ball, 2000}

There are numerous ways in which this basic
problem can be modified {o allow for the things
that conservation biologists see as important. For
example if the data matrix includes information
aboui the area of a vegetation type in a sile, or the
size of a population of a species in a site then the
target is not just to represent the feature but 1o
choose enough sites so the vegetation type of
species is adequately conserved.  In early work
atgorithms paid no attention to the spatial pattern



of sites chosen for a reserve system. In our recent
work our objective function is to minimize a
linear combination of the total area (or costs) of
sites selected and the boundary length of the final
reserve system. This makes the problem non-
linear and means that the final reserve sysiem is
more spatially cohesive — an important part of a
good reserve systern. My intent here is not to
discuss ail the possible ways of formulating the
reserve design problem, but more to give an
example of the kind and scale of problem
concerned.  In particular the Great Barrier Reef
marine Park Authority is solving such a problem
where the number of sites is about 13,000, and
The Nature Conservancy are looking at problems
with 20,000 sites and several hundred constraints,

3.3 The Alporithms to Selve the Problem

There are many ways to find good solufions to
different versions of the reserve design problem,
Early methods relied on heuristic methods such
as richness, rarity and greedy algorithms {Pressey
gt al., 19971 More recently Ball {2000] has used
the simulated annealing algorithm to create a
flexible tool, MARXAN, which finds good
solutions to many variations of the basic reserve
system design problem [Kirkpatrick et al.. 1983].

1n our application of MARXAN we are repeatediy

to reserve. with outpuis, in this case our capacity
to conserve viable popuilations or landscapes.
These "models” are often vague. In practice there
are two areas where “models” arc hidden within
the formulation of the problem. The first hidden
modei is the analysis of data that determines what
features are in a site, whether those features be
species or habitat fypes. These models are often
statistical models that include considerable
uncertainty; however, because they can be
represented as maps they are rarely challenged!
The second hidden suite of models concerns
setting the targets for conservation. In practical
examples the constraints are usually to represent
x% of each habitat type, or x% of the range of a
species. The justification of x is invariably quite
rubbery. Given the enormous uncertainty about
the models that underpin the data and problem
formulation it has been remarkable to us how
much attention is paid to the algerithm used to
solve the problem.

3.5 Problems, Models and Algorithms

1t is only recently that { have been able to dissect
the concern that conservation biologists and
nature conservation managers hold for the role of
mathematics in decision support. 1 believe that
mosl of their concerns stem from their inability t©
vntangle the relationship between the three

queried about the validity of the “model”. Our
first task is to explain that MARXAN (and i3
variants) are not models, but aigorithms. For

small-problems -they--atmost--certainty—get-very-

close to finding one or more optimal solutions.

Our tests [Pressey ot al, 1997] on systems where

branch and bound integer linear programming
methods shows these methods (o be remarkably
efficient and fast.

It would appear that the “black-box™ and
compuier-based nature  of algorithms  like
simulated annealing lead to suspicion.  This

suspicion regarding the algorithm delracts
attention from where users real suspicion should
lie ~ in the formuiation of the problem and the
nature of the “meodels” that invariable underlic
the reiationship between conirol variables and
oUICOMmES,

3.4 DModels that Underlic Decision-Making
Problems

Behind any problem there must be ways of
conngcting the decision variables, like what sites

" a constraini that will have the most profound

mathematical components of decision theory:
problem, models and algorithm.

The-definition-of-the ..pr.gbleﬂ}. should -be ol oSt

concern. It is how we set objectives and
constraints; or indeed what we call an objective or

affect on any conservation planning of
management oulcome.  For example, in the
reserve design problem we could have set the area
to be conserved as a constraint and the objective
could have been to maximize the number of
features conserved. Reformulating the problem
like this has profound social and economic
implications and will change cur final solution
dramatically,

The statistical and verbal models that underpin
the data used in the problem should also be
subject to carcful scrutiny, In particular any
theory or miodel used to set the target area or size
of a feature will have a huge impact on the result.

Despite the importance of the problem definition
and the models hidden in the problem, there is
always remarkabie interest in the algorithm. |



have often been asked to test the algorithms on
real systems, yet in some cases there are
mathematical proofs available to show the
algorithm guarantees and optimal solution. Even
where we cannot guarantee finding an optimal
solution, the error incurred by the algorithm is
invariably orders of magnitudes smaller than
minor changes in problem formulation. I have
often found that the only way to disentangle the
three  components  and  hence  rectify
misconceptions aboul their relative importance is
to use an extended analogy that relates to a
problem people encounter in everyday life.

4, CONCLUSIONS

The {ension between  conservation  and
quantitative decision theory is both intriguing and
frustrating. It challenges us to be even more
explicit about how we express mathematical ideas
and use them to aid decision-making. One of the
most important messages to sell al an early stage
of any dialogue is that mathematics and
computers deliver decision support not decision-
making, No one will ever feel comfortable with
computer programs making decisions where there
is interplay of social values, uncertainties and
complex interactions. In this sense decision
support tools are probably best treated as tools for
education not prescription.
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