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Abgstract: Interest in the impacts of low-frequency climate variability and climate change on natural
resources planning and management has grown in recent decades. Although numerical climate models offer a
means of deriving climate scenarios for investigating such impacts, their spatial resolution is too coarse for
many applied applications. This sitvation has led to the development of statstical downscaling methods
linking local- and regional-scale weather to large-scale atmospheric circulation. This paper reviews recent
progress in statistical downscaling. It presents the current state of knowledge, examines issues regarding the
suceesstul application of downscaling techniques, and highlights research opportunities. An example, using a
nonhomogeneous hidden Markov model (NHMM) and atmospheric and precipitation data from south-
western Australia, shows that a well-constructed downscaling model can be used to diagnose atmospheric
circulation changes that drive nmuitidecadal fluctuations in precipitation.
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1. INTRODUCTION 2. TECHNIQUES
Predicting—the—tmpacts—oflowtregqueacy—climate Statistieal-dewnsealing—invelves—developing semi
variability and {potentialy climate change on water empirical  relationships  between  large-scale
resouices is increasingly relevant [Burges, 1998]. atmospheric  variables (predictors) and local
The need for predictions based on physical rather surface variables (predictands). In its most general
than purely statistical models has lead to the form: '

development of coupled atmosphere-ocean general

circulation models (GCMs) and, nested at fiper R = F(X,r) Ty (1
spatial scales, limited area models (LAMs).

Although Perfor ming well at simulating large-scale where R, represents the local-scale predictand at
atmospher;c fields, GCMs and LAMS over- single or multiple sites at time #; Xy is the
estimate the frequency and under-estimate the predictor set (a collection of current and past
intensity of daily precipitation aqd thus fail to values of large-scale atmospheric variables}, and F
reproduce the statistics of historical records at quantifies the semi-empirical relationship Hnking
local scales [Mearns et al., 1995; Bates et al, the two disparate spatial scales. Most statistical
1998].  These llrmtgnons have . led to. the downscaling has focussed on daily station (i.e.
deveiogmept of statistical down'sc‘ahr}g techniques point scale) precipitation as the predictand,
for sstimaling local 5?313 prempnaﬂgn Emm the‘ because daily precipitation is poorly reproduced in
coarse spatial resolution atmospheric fields of numerical climate models and is an important input
climate r{lodels [X_ﬂ’ ,19?9}' Disaggregation, als_o variable to many natural systems models. Predicior
ter_med . downscaling’ in hy.drology and  soil sets can be derived from sea level pressure (SLP),
science, 15 not covered here. T.‘mg paper presents an geopotential height, absolute or relative humidity,
overview —of —current statistical ~downscaling and temperature variables and combinations
methods linking focal scale precipitation to large- thereof. These variables are available at the grid
sca]g a_tmospherlc data, mc.[udes an eﬁsamplt‘i resolution of operational and research numerical
application, and. coqciudes with a discussion of clirate models. A typical GCM  horizontal
future research directions. resolution is of the order 300-500 km. LAMs have

typical horizontal resoiutions of 50-125 km, with
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some as fine as 15 km. Statistical downscaling
methods can be classified according to three main
technigues: weather classification; regression; or
weather generator based.

2.1 Weather Classification

Weather classification methods involve grouping
days into a finite number of discrete “‘weather
states” according to their synoptic similarity.
Formally:

S, =F(X;) Tse )
R, = Fe(S,) (3)

where §, is the weather state at time . Weather
state definition, F,, is achieved using objective

metheds such as cluster analysis, or subjective
circulation classification schemes. F;, is modelled

using resampling, regression, or as a probabilistic
model [e.g., Hay et al., 1991; Corte-Real et al,,
1999]. These methods often poorly reproduce the
persistence of wet and dry spells [Wilby, 1994].

The nonhomogeneous hidden Markovy model
(NHMM), as used herein, was developed to
overcome the poor performance of weather
classification based methods [Hughes et al., 1999].
A hidden Markov model is a doubly stochastic
process, involving an underlying unobserved

occurrences at a network of sites at time 1. Specific
NHMMs are defined by the parameterisations
chosen for the precipitation occurrence probability

distribution P(_RI[SK_) and the weather state

tfransition matrix P(S{[SIMI.X,) (see Hughes et al.

(19997 for details). Subsequent to NHMM fitting,
the joint distribution of daily precipitation amounts
at multiple sites 15 evaluated through the
specification of conditional distributions for each
state. An automatic variable selection procedure is
used to identify the key neighbouring sites (see
Charles et al, [199%a}).

2.2 Regression

Regression based approaches are conceptually
simple, determining linear or  non-linear
relationships batween R and X:

R, = F,(¥,:6) T<t (6)

where & is the parameter set of the linear or non-
linear regression method, F,. Methods used

include muliiple regression [Murphy, 1999],
canonical correlation analysis (CCA) [von Storch
et al., 1993}, and artificial neural networks [Crane
and Hewitson, 1998} The relationships obtained
are sensitive to the choice of predictors [Wilby and
Wigley, 20007,

(hidden) stochastic process that can only be
observed through another stochastic process that
produces the sequence of observed outcomes. The
observed process (such as precipitation occurrence
at a set of sites) is assumed to be conditionally,
temporally independent given the hidden process.

evolution of weather states) is assumed o evolve
according to a first order Markov chain [Rabiner
and Juang, 1986]. Thus the NHMM weather states
are not defined independently of the precipitation
data a priori, they are multi-site " precipitation
occurrence patterns identified during model fitting.
The NHMM accounts for spatial patterns in
precipitation occurrence, reproducing wet and dry
spell persistence as well as the inter-site spatial
correlations in precipitation eccurrence [Hughes et
al., 1999]. In its most general form, an NHMM is
defined by the probabilistic relationships:

Pls,ls. . X,) @)
PR S,) (5)

where X, is the vector of atmospheric predictors
at time ¢+ and R, is the vector of precipiation

2.3 Weather Generators
Weather generators can be conditioned on large-

scale atmospheric predictors or weather states
[Katz, 1996, Wilks and Wilby, 1999]:

R =F,0X,) Tt or

R, = F, l0]5,) 7

where & is the parameter set of the weather
generator, £, . Weather generators often simulate

precipitation together with secondary variables
{e.g., temperaturss, solar radiation) in a consistent
manner. Wilby et al. [1998] note that parameter
modification for future climate scenarios can affect
the relationships between the conditional variables.
Mareover, weather generators often underestimate
the temporal variability and persistence of
precipitation [Katz and Parlange, 19981
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2.4 Intercomparison Studies

Several studies have compared  statistical
downscaling methods or compared metheds to
LAM based dynamical downscaling. Wilby and
Wigley [1997] and Wilby et al. [1998] compared
six approaches (two neural nets, two weather
generators, and two vorticity based regression
methods) using observed and GCM data. The
vorticity based regression methods were found to
perform better. Validation criteria were root mean
squared errors of the following diagnostics: wet-
day amount mean, median, standard deviation and
95" perceniile; dry-dry and  wet-wet day
occcwrence  probabiiities; wei-day probabilities;
wet- and dry-spell duration mean, standard
deviation., and 90t percentile; and  standard
deviation of monthly precipitation totals. The
driving GCM (HadCM?2) exhibited very small
changes in circulation predictors (within the Hmits
of interannual variability} suggesting the need to
incorporate measures in addition to the circulation-
based predictors used {e.g., atmospheric moisture
based predictors). Using a common set of GCM
derived predictors; the various approaches gave
significantly different precipitation predictions for
changed climate conditions.

Zorita and von Storch [19991 compared their
analogue method [Zorita et al., 1995] to (i) a linear
regression method based on CCA applied to
monthly site precipitation totals and SLP fields;
(i1) a classification method based on classification

change when factors such as atmospheric vapour
content could influence storm intensity,

Mearas et al [1999] compared a circulation
classification approach, based on classifying 700
hPa fields, to the NCAR RegCM2Z mesoscale
model nested within the CSIRO GCM for 5 years
of 1xC0; and 2xCO, runs in esastern Nebraska,
USA. The RegCM2 model could often reproduce
monthly or seasonal precipitation quite well, due to
compensating errors in the overestimation of the
frequency and underestimation of iniensity of
precipitation events. Their results exemplify the
problem of obtaining different predictions from
different approaches, as the predicted changes in
mean daily precipitation obtained from the two
approaches were different in direction for 40% of
months and locations investigated. The statistical
downscaling results indicated predominantly mean
precipitation  increases,  whereas  RegCM:Z
produced both  increases and  decrsases  for
coherent subregions.

Murphy [1999] alsc compared dynamical to
statistical downscaling (linear regression, using a
variety of predictors capturing  large-scale
circulation, surface wind and vorticity, B5C hPa
temperature  and  specific  humidity, amd a
convective stability index) in a study of 976 sites
in Europe. Consistent with Mearns et al. [19959],
Murphy [1999] found that compensating errors
caused by an overactive hydrological cycle fead to
a RCM simulated mean monthly precipitation in

and regression trees (CART) applied o daiy
precipitation occurrence and SLP fields; and (iii) a
neural network, as an example of a non-linear
method, applied to daily precipitation amounts and
SLP anomalies for the Iberian Peninsular {South
West Europe). In general the amalogue method

more complicated methods while being technically
simpler to implement.

Kidson and Thompson [1998] compared the

RAMS model (boundary forced by twice-daily 25"
resolution ECMWTE analyses) to a screening
regression technique with indices of local and
regional flow, using data from 1980 to 1994 for a
network of 78 sites across New Zealand. The
regression approach better explained the daily
variance in precipitation anomalies. The poor
relative performance of the RAMS model was due
to its inability to resolve orography. a factor of the
50 km grid spacing used. They conclude that the
(linear) regression relationships developed could
be applicable when the predictors exfend a small
amount beyond the range of the observed data used
in fitting, but that it was preferable to use dynamic
models (such as RAMS) for significant climate

good agreement with the observed. Comparable
skill was shown by the RCM and the statistical
downscaling approach at the monthly scale.

3 EEYISSUES

Three key assumptions, common to all statistical
downscaling techniques, apply when downscaling
for current and future climates:

# Prediciors relevant to the precipitation
process are adequately reproduced in the
numerical climate model simulaiions.

2 The relationship between the predictors and
precipitation remains valid for periods
outside the fitting period (time invariance).
This needs careful assessment for future
climate projection.

o The predictor set sufficiently incorporates the
future climate change ‘signal’.  Some
approaches, for example siepwise regression,
may exclude predictors based on currernt
climate performance that will be important in
future changed climates.

For current climate conditions, the validity of the
first two assumptions can be assessed  using
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observed records of sufficient length. The recent
advent of Reanalysis products (NCEP/NCAR and
ECMWEF) provides multidecadal atmospheric
predictor  sets  useful for testing statistical
downscaling methods. Such work is on going
within our group [Bates et al., 2001]. Comparing
the downscaling results obtained from observed
data to those obtained from control run (i.e. current
climate) GCM and LAM data provides important
validation and diagnosis of numerical climate
model performance [e.g., Bates et al., 1598, 2000}

For future climates, Charles ei al. [199%b]
compared the 2xC0; projections obtained by
downscaling to the LAM grid-scale with those
produced by the LAM directly. The NHMM fitted
to the daily 1xCO; LAM data could reproduce the
2xC0O; LAM grid precipitation. Although not
validation in the traditional sense, this approach
adds confidence to the choice of predictors and
that the relationships derived during fitting remain
valid for the changed chlimate. Busuioc et al
[1599] have applied a similar method using
monthly data.

4. EXAaMPLE APPLICATION

There has been a decline in winter (May-October)
rainfali over SWA since about the middle of the
20™ century. Since the mid 1970s, this decline has
had important consequences for water resources

contrast, the frequency of State 5 increased
markedly around the mid-70s and remained
stationary since.
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Figure 1. Interannual varizbility of steady-state
probabilities for (a) State 3 and (b) State 5.
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management [IOCI, 1999]. The linkage between
the winter rainfall decline and regional changes in
atmospheric circulation has been investigated
using the NCEP-NCAR Reanalysis dataset for the
period 195898, observed daily rainfall series for
30 sites across the region, and a six-state NHMM
that--uses. - three---atmospheric --predisiors:
averaged over five points on a 3.75° longitude by
2.25° latitude data grid, north-south (N-3) SLP
gradient, and dew point temperature depression at

850 hPa (DT[°) [Charles et al., 1999a]. (DT,

is defined as the difference between the air
temperature and the dew point iemperatures at
850 hPa, it is therefore a measure of the humidity
of the lower troposphere.) The NHMM, fitted
using data for the 1978-92 relatively dry peried, is
able to reproduce the precipitation statistics of the
wetter 1958-77 period [10C], in press].

Time series of the steady-siate probabilities for
two of the six states (States 3 and 3) are shown in
Figure 1. The corresponding precipitation
probability patterns and SLP fields are shown in
Figure 2. Although interannual wvariability is
evident across the 1958-98 period. it is apparent
that the frequency of State 3 declined from 1958 to
the mid-70s and remained stationary since. In
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Figore 2 Precipitation provabitities{diameters
of circles indicate site precipitation occurrence
probabilities) and SLP fields for States 3 and 5.

A& reduction in the frequency of State 3 indicates a

reduction in the geourrence of moist westerly or

southwest winds bringing rainfall to the western
half of the region. An increase in the frequency of
State 5 indicates an increase in the number of dry
days across SWA. This is due to an increase in the
frequency of dry easterly or northeast winds
around high pressure systems centred to the east of
the region.

Thus application of the NHMM allows attribution
of muitidecadal regional precipitation {luctuations
to changes in synoptic climatology. Identifying the
farge-scale mechanisms responsible for these
changes is the subject of on-going research {{OCL,
in press).

5. FUTURE DIRECTIONS
Statistical downscaling models are useful research

tools for investigating the relationship between
large-scale climatic processes and local climate



variables, such as precipitation. A well

implemented and tested statistical downscaling

investigation:

s provides simulated precipitation sequences
reproducing  observed  siatistics  and
accounting for natural climate variability, for
multiple sites at the point spatial scale
required for impacts modelling (e.g.,
hydrological, agricultural, ecosystem
modelling) - thus overcoming the “scale
problem” of the coarse horizontal resolution
of numerical climate models;

¢ allows efficient generation of muliple
stmulations for assessing confidence limits
and predictand variability;

e can diagnose changes in  atmospheric
circulation pafterns responsibie  for
multidecadal precipitation variability; and,

o can produce climate change projections at the
spatial scale required for impacts modelling,
with a degree of confidence conferred from
associated LAM comparisons.

There are on-going challenges for the future
development, assessment, and application of
statistical downscaling . Priorities include:

s Increasing the number of studiss in semiarid
and tropical regions, as the majority of
applications have been in temperate,
midlatitude  regions in  the Northem
Hemisphere. Our group has begun work in
tropical Queensiand {Charles et al., 2001 1.
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