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Abstraet: The Srikanthan-McMahon stochastic model for daily rainfall, which uses monthly sets of
parameters, has been shown to provide satisfactory {it to both rainfall occurrences and rainfall amounts, and
also 10 rainfall amounts classified by the adjoining number of wet days. However it underestimales the
standard deviation of both monthly and annual rainfall totals, and Boughton {1999} has introduced a correction
factor which compensates for this shoricoming in regard 0 the annual totals. It will be shown here that this
does little to improve the standard deviation of the simulated monthly totals, and that the model cannot
reproduce observed sequences of wet—>wet and dry—dry years, and performs poorly in relation 1o the predicted
number of 'wet' years {those with above average annual rainfall). Appropriate adiustments are developed in
this paper, using data from 11 rainfall stations covering a wide spread of the Australian climatic environment.
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1. INTRODUCTION

The main objective m developing a siochastic
model of daily rainfall is w0 provide long input
sequences to rainfall-runoff models, Provided these

Table I. Daily minfall class limits in
the Srikanthan-McMahon (SM) model.
Class  Lower Hmit {mm} Upper imit {mm)

sequences retain the statistical characteristics of the
historical record, they can result in a range of
scenarios which may differ markedly from the
details of that record, and so enable more confident
design of hydraulic structures ranging in scale from
roof-tank. water supplies. to agricultural, flood

1 0 0.0
z .1 0.9
3 1.0 2.9
4 3.0 6.9
5 1.0 14.9
& 150 305
7 31.0 -

controb-and-water supply-dams:

Most stochastic models of daily mainfall can be
divided into two parts: a model for rainfall
occurrence, which provides a sequence of dry and
wet days, and a model of rainfall amounts, which
simulates the amount of rainfall occurring on each
wet day. A comprehensive review of approaches to
modelling daily minfall is given in Woolhiser
{1992].

Srikanthan and McMahon [1985), in a smdy
covering the main climatic regions of Australia,
followed Allan and Haan [1975] by exiending the
Markov chain structure commaonly used for rainfall
occurrence inio a multi-state model or transition
probability matrin, in which the daily rainfalls are
grouped intc up o seven classes of given
magnitude ranges (see Table 1), and the
probabilities are caleulated for transition {rom gach
class to any other. The lowest class gives the
occurrences of dry days, the top class is modeiled

by a skewed normal distribution {requiring
estimation of 3 parameters), and intermediale
classes are modelled by a hnear distribution.
Separate parameter values are calculated for each
month, so that when all 7 classes are used, the
total number of parameters s 12 X (7x 6+ 3) =
540, However, when there are insufficient data in
Ciass 7 for a parficular mosnth, the number of
classes may be reduced, the top class having the
lower limit shown in Table 1, but no upper limit.

The parameter set for each month is caleulated
from the historical record by counting the number
of occurrences of transitions between <lasses, and
dividing by the total number of transitions o
obtain the iransition probabilities. The rainfall
amounis in the top class are then adjusted for
skew, and fitted to a normal distribution.

A similar approach has more recently been used by
Gregory et al. [1993], in a study of area-average
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daily rainfatis for 3-month seasonal periods in
Britamn. They noted that the transition probability
matrix was betier able to simulate the standard
deyiation of longer-period totals than models which
separate rainfall occurrence from rainfall amount.

Chapman [1998], in a study covering 65 rainfall
stations in Australia, South Africa, Pacific islands
and MNorth America, found that there are significant
differences between the distributions of daily
rainfall amounts, when they are classified according
to the number of adjoining wet days (0,1 or 2).
Thus Class O comprises solitary wet days, Class |
comprises rainfails on days at the beginning or end
of a wet spell (of at least 2 days' dumtion), and
{lass 2 comprises rainfalls in the interior of a wet
speld (which is therefore of at least 3 days'
duration). For the Australian stations, the average
ratio of Class O rainfal] to mean daily rainfal]l was
3,40, while the ratio of Class 2 rainfall to mean
daily rainfall was 2.33. Failure 10 model such
differences would clearly have a major impact on
the cutput of a rainfall-runoff model.

Chapman [1998] also showed that the Snkanthan-
MeMahon (SM) model successfully models the
rainfall in each class, as shown for a typical station
in Figure 1. Ths feature cannot be reproduced in
models which simulate rainfall occurrences and
rainfall amounts separately, unless three different
distributions are used for the rainfall amounts.

26

proposed a correction for the SD of annual rainfall
in the SM model, in which the simulated daily
rainfall in each year is multiplied by the following
ratio:

ratio = {M+ F(T_ -M)}T, (D)

where Ty is the annual total for year 1, M is the
observed mean anpual rainfall, and F s an
adjustment factor, which can be shown to be the
rafio of the observed to the simulated S,
SD/SDg.  This comrection forces the simulated
annual SD t0 be exactly equal to the observed
value, which is an artificial consiruct, as the Si5 of
the historical sample is unlikely to be exactly the
same as that of the population,

This  peper addresses  the problem  of
underestimation by the SM model of the §D of
monthly and annual rainfail, and also some
shortcomings of the model in simulating wet—=wel
and dry—dry annual sequences, where 'wel' and
'dry" are defined as being above and below average
rainfall respectively.

Z2. DATA

The data used in this study are from the files
prepared by Snkanthan and McMahon [1985] for
their model development and demonsiration.
Siations with at least 40 years of data have been
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selected—rom—the—Foll——set: Lecations—of-—the
stations are shown in Figure 2, and details of the
records are given in Table 2. Only complete
calendar years of record have been analysed, and the
record hias been taken @8 CORtiAUOUS aCr0ss missing
years. All rainfall amounts are 10 the nearest 0.1

min.
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Figure 1. Observed (full line) and simulated
{dashed line) mean daily rainfaiis for Sydney,
classified according o number of adjoining wet
days {0, 1 or 2). Simulation is by SM model.

Heowever, the SM model generally underestimates
the standard deviation (3D} of monthly and annual
rainfalls, which would resuit in underestimation of
exireme events. This is a feature common {0 most
stochastic models of daily rainfall, and is termed
‘overdispersion’ [Katz and Parlange, 1998; Katr and
Zheng, 1999; Wilks, 1999]. Boughton [1999]

Halbouradte"

Figure Z. Location of rainfall stations.
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Table 2. Details of rainfal! records.

Station name First Last Yearsof
VEar vear record
Adelaide 1853 1978 i25

Alice Springs PG 1887 1965 73
Bamboo Springs 1917 1976 55

Brisbane 1869 198l 112
Darwin PO 1872 1939 66
Kalgoorlie 1940 1981 41

Mackay PO 1889 1949 61
Melbourne 1856 1980 125

Monto 1931 1980 50
Perth I88C 1980 101
Sydnev 1859 1981 123

All analyses were performed with the full period of
record available, and all simulations were for a
period of 10000 years. For each station, the
number of classes (see Table 1) in each month was
adjusted so that there were at least 10 samples in
the top class, in order fo provide for reasonable
fitting of the skewed normal distribution. This
was accomplished by maximum likelihood fitting
of data normalised by the Box-Cox transformation

y=[{x+cy - 1}/h, A=

y = log (x+c}, A=0 (2)

where the constant ¢ has been taken as 0.1,

3. QUANTIFICATION OF PROBLEMS

The magnitude of the underestimation is given by
the regression (excluding Darwin):

SD, =078 SD, + 133 (R =099 (3)

The monthly 8D's are also underestimated by the
original model, as shown in Fignre 4  The
regression for all stations and months is

SD, =081 8Dy + 6.5 (R =0.97) (&)

When the Boughton correction was applied o the
annual SD's, the regression cocfficient for the
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Figure 3 shows the relation in the SM model
beiween observed and simulated annual 8D for all
stations. It will be seen that, with one exception
(Darwin}, the simulated SDis underestimated, with
the error increasing with higher SD. The effect of
the Boughton correction is to force ail the points

Figure 4. Relation between observed and
simulated monthly SI3 for all stations.

monthly SD¥s increased from 0.81 10 (.85, leaving
most of the bias uncorrected.
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figure 3. Relation between observed and
simulated annual 8D for ali stations.

McMahon 1s umable to simulate observed
sequences of 'wet' and ‘dry' months or years. This
is illustrated in Figures 5 and 6,

A feature that was not apficipated is the relative
constancy of the simulated percentage of wet years,
as illustrated in Fgure 7.

4. MODIFICATION OF MODEL

It was recognised that adjustment of SD's, whether
applied on 2 monthly or annual basis, would have
ne effect on  the persistence characteristics
Hustrated in Figures 5 and & However, the
cifect on 3D's of adjusting the persistence
characteristics was usknown.  An aliempt io
improve the persistence characlerstics  was
therefore given first prority.



9.7 An obvious approach o this problem is o obtain
’ two sets of parameiers for the madel, one for wet
years and one for dry. In simulation, the decision
B 8.8 on which set of parameters to use for a particular
& year is then based on the observed probabilitics
T Pr(WIW) and Pr (DID). The results of this
ﬁ N5 & procedure (Figures B-10) are acceptable in terms of
1 - g s the persistence characteristics, but there remains a
% " significant underestimate of the simulated
§ 0.4 percentage of wel years. This has not been further
addressed at this time.
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1 B L AL R LS ILAL LIS S The method adopted to adjust the monthly and
40 43 St 35 60 annual 3D's was to use the Boughton algorithm
Observed ® wet years (1) for both statistics, but appiied in a way which

Figure 7. Relation between observed and
simulated perceniage of wet years.

does not force the SD 1o be the same as the
observed value, MNoting the very high correiations
(3) and (4) betwesn observed and simuiated
values, covering all stations and ail months, the
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Figure 19. Reclation between observed and
simulated percentage of wet vears,
after model modification.

value of F (=8Dy/SDg) was calculated from the
regression equations. However, adjustment of
the annaual SD's changed the regression relation for
the monthly SD¥'s, and vice versa, thus
requiring an iterative approach. After 3 cycles of
adjustment, the equation for the adjustment factor
for annual SD's was

F =0.96 SD_/(1.27 SD, - 3.6)/(1.08 SD, - 2.4)
(5

while that for the monthly 8D's was
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Figuere 11. Relation between observed and
simulated annual 8D, after model maodification.

F = 1.03 SD,/(0.92 SD, + 4.6)/(0.92 8D, + 1.6)
(&)

The— resulis—of -these—a djustments" are Sh@‘ﬁf‘ﬂ .......... 11}
Figures 11 and 12. Regressions through these daia
{without the annual 8D for Darwin) show that the
bias has been completely removed.

5. DISCUSSION

Classifving the parameters of the SM model into
separate sets for dry and wet years almost doubles
the number of parameiers, and may force =a
reduction in the number of rainfall classes which
can be used, as the available data are now split into
the two groups. Nevertheless, the improvements
in capacity for simulation of the behaviour in
successive wet or dry years represent a significant
upgrading of the model. This is accompanied by a
major improvement in the predicion of the
percentage of wet years, a statistic which does not
appear fo have been previously examined in tests
of the SM model.
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Figure 12. Relation between observed and
simulated monthly SD, after mode! modification.

and annual SD's was the very strong comelation
between the observed and simulated values,
covering stations over a wide range of climatic
environments and all months of the year. This
clearly reguires validation from tests with more
comprehensive data sets.  The nonconforming
behaviowr of the annual 8D for Darwin may be due
to the use of the calendar year throughomt this
study. It would be preferabie to use a hydrologic
water vear for all siations, with the bresks ai
periods of minimam hydrologic activity.

It shouid be noted that the use of the regression
relations to determine the value of F in the
Boughion algorithm obviates the need to rup the
modet {irst in uncorrected mode.  After simulation
of daily data {or 2 month, the approprate monthly
correction (which requires the monthly fotal and
the observed mean and 5D for that month) is
applied. At the end of the year, the correcied
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monthly totals are added to give the annual total
for that year, and the annual correction can then be
applied.

This study has concentrated on mean values of the
statistics considered, by using a lomg run of
simulated data, Subsequent work  should
investigate their variability, by using many
replicates of runs of the same length as the
observed data.

&. CONCLUSIONS

Simpie modifications to the SM modei enable the
bias 0 be removed from the simulated SD of
monthly and annual rainfall.  Classifying the
parameters of the model according 10 whether the
current year is 'wet' or 'dry' is effective in
modelling the persistence of annual rainfalls, and
improves the simulation of the percenlage of wet
YEArs.

Although these results have been obtained by
sampling over a wide range of climatic
environmenis, they require validation by use of a
more comprehensive data set,
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