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Abstract: A companion paper (Arena et al, 2019) has introduced the architecture of the DSS and has 
described its governing equations. In a real-time, dynamic decision-making context, it is a tool to support 
decisions at the current time step concerning water allocations to municipal demand centres and irrigation 
districts as well as additional intakes from costly water sources in a water resources system featuring reservoirs 
with over-year behaviour. The DSS is designed as a linearized MIP (mixed integer programming) optimization 
model and as such, it includes an objective function and constraints on 1) mass balances at system’s nodes, 2) 
systems’ topology, 3) component’s capacity, 4) spills, as well as non-empty conditions on reservoir storage at 
the end of the Forecasting Horizon (FH). It is a multi-scenario optimization tool because future, uncertain 
inflows are modelled, until the end of the current water year, as three different inflow scenarios: low flows, 
normal flows and high flows. The optimization model is solved for the three different scenarios and a unique 
solution that can be turned into one actual, implementable, decision at the present time step is obtained by 
imposing non-anticipatory (or congruity) constraints according to the principle of scenario aggregation 
(Rockfellar and Wets, 1987). The objective function is the weighted sum of the scarcity costs at all demand 
centres and of cost of water supply from additional sources along the multi-year FH, discounted to their present 
value, being the weights the occurrence probability of each of the three inflow scenarios. Given the over-year 
nature of the systems of interest for this study, the time unit is one month. 

This paper first discusses estimation of scenario probabilities and of scenario inflows, then describes the 
application of the DSS to a real-world, two-reservoir system in Southern Italy. Its performances, in terms of 
scarcity costs and costs of additional, costly, water resources, are simulated over a forty-year historical period, 
on a monthly basis. Sensitivity of the DSS to different demand levels is explored considering different drift 
scenarios. Furthermore, in order to contrast the performances of the multi-scenario DSS presented here (DSS-
SC), we introduce a single-scenario DSS, identical to the multi-scenario one, except that decisions are made 
based on exogenous inflow forecast vectors. We look at two different types of forecast vectors that are meant 
to provide a lower and upper bound of DSS performances: the first type is a vector containing only the long-
term means of monthly inflows and gives rise to DSS-WF (where WF stands for “worst forecast”). The second 
vector type contains instead real (i.e. actually occurred) inflows in the first six months of the FH and long-term 
means of monthly inflows for the remaining FH – 6 months. It gives rise to a DSS-BF (BF stands for “best 
forecasts”). 

Results show that DSS-SC compares quite favourably with DSS-BF: differences in total costs range from 37% 
for drift=0.75 to 27% for drift = 0.5. DSS-BF clearly outperforms DSS-WF with improvements ranging from 
17% (drift = 0.75) to 62% (drift = 0.90). In one demand condition, described by a drift of 0.9, DSS-SC even 
outperforms DSS-BF. Investigation of this behaviour led to recognize that, at least for this drift, DSS-SC would 
manage the system so to keep the largest reservoir of the system full enough to allow issuing less restrictive 
irrigation supply reductions than its DSS-BF counterpart, and would therefore reduce the associated scarcity 
costs. This thought-provoking situation, if on the one hand confirms that in these long-memory systems 
“abrupt” failures can be the consequence of long-term policies and decision styles, on the other hand stimulates 
the reflection that DSS performances can indeed depend on a number of different factors that need to be 
investigated in deeper detail. From this standpoint, a single historic time series is probably not enough to 
explore the different possible behaviours of the DSS. For this reason, a stochastic validation of DSS-SC, by 
simulating its behaviour through synthetic time series, is in order and is the next research objective. 
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1. INTRODUCTION 

The companion to this paper (Arena et al, 2019) has introduced the general concept of the DSS, its governing 
equations, as well as the general objectives of this study. In a real-time management context, the study aims at 
comparing the performances of a DSS based on a multiple-inflow scenario optimization model such as the one 
discussed here, and the same DSS based on a single-scenario model where inflows are provided in the form of 
exogenous forecasts. The companion paper also contains the methodologies followed to estimate scarcity costs 
(model’s objective function consists of minimizing them together with the costs from the purchase of water 
from additional sources) and the methodologies adopted to linearize the model. In this paper we will first 
discuss some issues related to the estimation of inflows in the multi-scenario setting and will introduce the 
application of the DSS on a real two-reservoir system in Southern Italy. Finally, we will provide and discuss 
results from DSS simulation, contrasting multi-scenario model performances with those obtained from the 
same DSS in a single-scenario mode, working with exogenous inflow forecasts. 

2. ESTIMATION OF SCENARIO PROBABILITIES AND INFLOWS 

As explained in the companion paper, in the DSS, decisions at the current time step on water allocations and 
water intakes from additional costly water sources are made solving, for three different inflow scenarios “sc” 
(low, normal, high) an optimization model along a multi-year Forecasting Horizon (FH). The model includes 
the objective function and constraints on 1) mass balances at system’s nodes, 2) systems’ topology, 3) 
component’s capacity, 4) spills, as well as non-empty conditions on reservoir storage at the end of the 
Forecasting Horizon (FH) (Arena et al, 2019). A unique solution that can be turned into one actual, 
implementable, decision is obtained by imposing non-anticipatory (or congruity) constraints according to the 
principle of scenario aggregation (Rockfellar and Wets, 1987). The objective function is the weighted sum of 
the scarcity costs at all demand centres and of cost of water supply from additional sources along the multi-
year FH, discounted to their present value, being the weights the occurrence probability of each of the three 
inflow scenarios. Given the over-year nature of the systems of interest for this study, the time unit is one month. 

The working assumption is that at each time step these three inflow scenarios depend on the extent of occurred 
inflows from the beginning of the current water year (September) to the beginning of the present month: the 
level of past cumulative inflows qualifies the present hydrological condition of the system as dry, normal or 
wet. The probabilities of each of the three inflow scenarios appearing in the objective function are assumed to 
coincide with the estimated transition probabilities from system’s current state (dry, or normal or wet) to a 
low(sc=1), normal (sc=2) and high (sc=3) condition of cumulative future inflows from the present month to 
the end of the water year.  

To decide what cumulative inflows should be considered low, normal or high and to estimate transition 
probabilities, historical records of monthly inflows to system’s reservoirs must be analyzed. In the application 
for this study, 45 yr. inflow series, from 1971 to 2016, were used. Since in the objective function of the model, 
scenario probabilities are given for the whole system, not for each single inflow series, the historical record to 
analyze is Isys(n), the sum of inflows I(i,n) i = 1, … Nres; n = 1…540, into the Nres reservoirs of the 
system: Isys(n)=∑ I(i,n)

Nres
i=1 . The series to analyze are Cumulative System Inflows from the beginning of current 

water year (September) until the end of current month m CIsys(m)=∑ Isys(τ)
m
τ=1 and Future System Inflows 

FIsys(m)=∑ Isys(τ)
12
τ=m+1  

Figure 1 shows the relationship between month m, cumulative inflows CIsys(m) and future inflows FIsys(m) until 
the end of the water year. 

Each 45-yr. sample of cumulative inflows (e.g. October to April) as well as each 45 yr. sample of future inflows 
(e.g. February to September), is assumed to be distributed according to a mixture gθ(x) of low, normal and high 
inflows:  

( ) ( )
3

1

 j j

j

g x xθ λ
=

= Φ∑                               (1) 

Where x are inflows (one of the 23 different CI or FI inflow types), λj identifies the “concentration” of each of 
the three components in the mixture: ∑ λj

3
j=1 =1, Φj(x) is the distribution of the j-th component (a mixture of 

normal distribution was selected here) and 𝜃𝜃 is the vector containing λj and parameters µj and σj of distributions 
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Φj(x).

 
Figure 1. Relationship between month-types, cumulative inflow and future (scenario) inflows 

Maximum likelihood estimation was performed through an EM (Expectation-Maximization) algorithm 
available in the “Mixtools” R-package (Benaglia et al. 2009). Figure 2 shows graphically the outcomes of the 
estimation procedure. 

 

 
Figure 2. Examples of three-component mixture distributions (blue = high, green = normal, red = low) fitted 

to 45-year CIsys and FIsys samples   

From the estimated λj
(CI) and λj

(FI), one may identify in the inflow sequence ordered in ascending order the 
thresholds of low, normal and high flows. Transition probabilities, that are identified with probabilities sc of 
the single scenarios of future inflows, depend on the month-type, are defined by (2) and may be easily estimated 
from the historical records.  

( ) ( ) ( ), ,    [     |    ]m i f sys m sys mSc Prob FI is in state f CI is in state i=                                                                                        (2) 

2.1. Determining scenario inflows 

Finally, the vector Iforecast (i,t,sc) containing inflows from t=1 to t = FH (FH is set equal to 24 in this application) 
can be calculated for each relevant site i (reservoir) and for each of three scenarios. This vector contains 12 – 
t values deriving from the calculations explained below and 12+t average monthly values. Vectors of inflow 
forecasts are built in this fashion for two reasons. The first is that a FH of 24 months was identified as optimal 
for the specific system under study, albeit using a different objective function (sum of standardized squared 

1023



Arena et al., A multi-scenario Decision Support System for real-time operation of over-year multi-reservoir 
systems 2. DSS simulation 

 
deviations in Arena et al. 2017). The second, and more significant for the objectives of this study, is that 
limiting scenario formulation only to the hydrologic year allows comparison of the multi-scenario model 
presented here with a single-scenario DSS using seasonal forecasts whose accuracy, at least at the state of the 
art, is very limited for periods longer than six months.  

Calculations are performed by disaggregating in time (among months to the end of the water year) and space 
(among reservoirs) system’s average “low”, “normal” and “high” of future inflows 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠  estimated through the 
Mixtools package. This is done following the steps below: 

1. For each reservoir assess the long-term means of monthly system’s inflows reservoir m(i,p), p = 
1….12; i = 1…Nres 

2. For each month-type m, compute the ratios R(i,p)=m(i,p)/∑ m(i,p)
12
p=m  ; 

3. For each series of 𝐹𝐹𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚), evaluate means µj = µ(sc) j = 1…3 (low, normal or wet scenario) of the 
components of the mixture distribution; 

4. To obtain the vectors of inflows into the i-th reservoir of the system introduce ratios 
R (i, p)=m(i,p)/∑ m(i,p)

Nres
i=1 ; 

5. For each month-type, obtain monthly system inflows until the end of the water year Isys(m,sc) = 
[Rm∙µ(sc), Rm+1∙µ(sc)…. RSept∙µ(sc)]; 

6. Complete the vector with mean monthly values Iforecast (i,m,sc) = [𝑅𝑅′(𝑖𝑖,𝑚𝑚) ∙ 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚,𝑠𝑠𝑠𝑠),𝑅𝑅′(𝑖𝑖,𝑚𝑚+1) ∙
𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 (𝑚𝑚+1,𝑠𝑠𝑠𝑠)…. 𝑅𝑅′(𝑖𝑖,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) ∙ 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑠𝑠𝑠𝑠) , m(i,Oct), m(i,Nov), m(i,Dec)….. m(i,Sept), ….m(i,m-1)]. 

3. APPLICATION 

The DSS was tested on a real-world scheme in Southern Italy (Figure 3). Basic information on supply sources 
hydrology, demand and relevant model parameters are reported in Figure 3. The two sources of additional 
water are provided by the Salento Aquifer that supplies directly the demand centres of Salento, and by 
Cogliandrino reservoir, a reservoir for hydropower production that does not belong to the system, but that can 
provide additional water at the cost of lost hydropower production. Constraints on withdrawal from these two 
sources are indicated in Figure 3 in the form of a withdrawal threshold Vmax. Unit prices for both these resources 
are set in this study at 0.15 €/m3. Monthly target demands for municipal supply TDmun are assumed constant 
along the year, while monthly target demands for irrigation TDirr vary along the year, as per the values shown 
in Figure 3.The behaviour of the DSS was simulated over a 40-yr. period, from water year 1966/67 to 
2005/2006. Simulation consists in running the DSS using initial reservoir storages and inflow forecasts for the 
FH (two years ahead) at the first month (October) of water year 1966/67. The DSS then provides the schedule 
of water allocations to demand centres and of expenditures for additional resources for two years in advance. 
Obviously, only the first decision, the one for the current month, is implemented. In the next simulation step, 
actual inflows into the reservoirs in the past month become known, so that new initial reservoir storages can 
be calculated and the DSS is run again with updated reservoir storages and inflow forecasts. The process 
continues for the subsequent 479 time steps.  

3.1. The redistribution procedure 

In order to adjust for situations when planned decisions cannot be implemented because they are based on 
forecasts that have overestimated inflows and water stored is too little to enforce the planned decision, a 
redistribution procedure was added to the simulation step. It starts when at least one of the reservoirs is empty 
and is formulated as an optimization model to allocate resources only at the present time step where the issue 
arises. Constraints are the same as those of the DSS, except for equations on spill and on final storage at the 
end of the FH that are not necessary since no spill is expected to take place in any of the reservoir of the system 
when the redistribution procedure is activated. In addition, there is no constraint on final storage to enforce as 
the procedure is only applied to the current time step. In the redistribution procedure the objective function is 
the same as in the DSS except that no scenarios are considered since the objective here is the equilibrium 
among scarcity costs given the available resources. As this equilibrium is to be found only in the current time 
step, not along the entire FH, scarcity costs for irrigation cannot be evaluated on a yearly scale. To overcome 
this issue, scarcity costs are expressed as a linear function of water deficits, using as slope the slope of the third 
piece of the linearized scarcity cost-deficit relations (see Figure 3 of the companion paper). 
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Figure 3. Schematic of the Agri-Sinni water resources system. Numbers indicate nodes in the model. 

Additional, costly water resources are withdrawn from node 18 (Cogliandrino reservoir) and Salento Aquifer 
(Node 17). Target demand values for municipal uses TDmun and for irrigation purposes (TDirr) are referred 

to drift = 0.75 (section 3.3) 

3.2. A refinement of the decision-making process 

Finally, in order to increase the verisimilitude of the simulated decision-making process, it was decided that 
the April schedule issued at the end of March for irrigation uses must remain unchanged along the forthcoming 
irrigation season, starting in April and finishing at the end October. This is consistent with the procedures 
presently in place, that see a centralized Authority allocating available water at the beginning of the irrigation 
season to the different reclamation consortia. During the irrigation season, however, the DSS continues to run 
because adjustments in municipal allocations are still allowed and because additional water may be purchased 
to benefit both municipal and irrigation demand centres. This refinement in the decision-making process 
requires some changes in the structure of the DSS (for instance, in the month-types belonging to the irrigation 
season the Objective Function need no longer include scarcity costs for irrigation in the current year, as 
allocations for irrigation in the current year are no longer decision variables). Details are contained in Oliva 
(2019). 

3.3. Boundary conditions 

In order to assess the performances of the DSS in different conditions, various boundary conditions in terms 
of supply (type of inflow forecasts) and demand were used. As far as the latter is concerned, we use the concept 
of drift (Vogel et al. 1999) to explore the behaviour of the DSS when the same system, supplied by the same 
inflows, is challenged by different demand levels. Drift is defined as (µ – Y)/σ, where µ is mean annual inflow 
into the system, σ its standard deviation and Y the average annual yield. If inflow series are unchanged, lower 
drifts imply a higher pressure on water resources (Y is closer to µ due to higher demand) while higher drift 
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values indicate a lower pressure on water resources. Three different drifts were considered: 0.50, 0.75 and 0.90. 
Furthermore, in order to contrast the performances of the multi-scenario DSS presented here, we introduce a 
single-scenario DSS, identical to the multi-scenario one, except that decisions are made based on exogenous 
forecast vectors. We look at two different types of forecast vectors that are meant to provide a lower and upper 
bound of DSS performances. The first type consists of a vector containing only the long-term means of monthly 
inflows. The second type contains instead real (i.e. actually occurred) inflows in the first six months of the FH 
and long-term means of monthly inflows for the remaining eighteen months. These two single-scenario DSSs 
are supposed to describe the entire range of DSS performances because the DSS using average monthly inflows 
as forecasts is run with readily available, but poor inflow forecasts. At the other end, a perfect foresight for six 
months ahead should be considered as the upper limit of the quality of currently available seasonal forecast 
services. 

4. RESULTS AND DISCUSSION 

Table 2 contains average yearly municipal and irrigation scarcity costs, expenditures for additional water 
resources, and total costs over the 40-yr. period of simulation for drift = 0.5, 0.75 and 0.9 using the proposed 
multi-scenario DSS (SC) and single-scenario DSSs, one making use of long-term average inflows (DSS-WF 
Worst Forecast) and the other using six-month-ahead real inflows as forecast, complemented by 18 months of 
long-term average inflows (DSS-BF Best Forecast). Looking at total costs, for drift = 0.5 and drift = 0.75, costs 
resulting from system management supported by the multi-scenario DSS (DSS-SC) stay in the middle between 
DSS-WF and DSS-BF, being clearly closer to DSS-BF for drift = 0.5 and staying in the middle between DSS-
BF and DSS-WF for drift = 0.75. Quite surprisingly, for drift = 0.90, DSS-SC even outperforms DSS-BF 
although in this case the magnitude of damages (scarcity costs) and of the related coping measures are clearly 
considerably lower than those materialized for lower drifts. The reason for this behaviour allows some insight 
into model’s working and will be explained later. Sticking to Table 2, it should be also highlighted that the 
good performances of DSS-SC are achieved at a price: financial expenditures for additional water resources 
are highest for the DSS-SC for drift = 0.75 and drift = 0.50, and very close to DSS-BF for drift = 0.90. However, 
low financial costs do not necessarily imply good management, as can be seen in the case of DSS-WF: low 
expenditures for additional resources will ultimately impose high social (scarcity) costs on final users.  

Table 2. Comparison of simulated average annual costs for multi-scenario DSS-SC and for single-scenario 
DSS-BF and DSS-WF for the three drifts considered  

Drift 
 

Municipal Scarcity 

Cost [M€/year] 

Irrigation scarcity Cost 

[M€/year] 

Expenditures for 

additional water 

resources  [M€/year] 

Total Cost [M€/year] 

DSS-

WF 

DSS-

BF 

DSS-

SC 

DSS-

WF 

DSS-

BF 

DSS-

SC 

DSS-

WF 

DSS-

BF 

DSS-

SC 

DSS-

WF 

DSS-

BF 

DSS-

SC 

0,5 4,41 0,17 0,00 4,67 2,61 3,16 0,81 1,24 1,96 9,90 4,02 5,12 

0,75 2,58 0,36 0,40 2,57 1,99 2,63 0,43 1,04 1,62 5,59 3,40 4,65 

0,9 0,70 0,00 0,13 1,54 1,48 0,43 0,16 0,38 0,36 2,40 1,85 0,92 

 

Several elements can help understand why DSS-SC over-performs DSS-BF for drift = 0.90. In the first place, 
as shown in Figure 5, higher total costs in DSS-BF are due to a cost peak at months 286 (a July) and 287 (an 
August) of the simulation period. This cost peak is associated to a deficit in irrigation centres at node 14 and 
especially node 12, the one with the largest water demands in the system. These two demand centres are 
supplied by Monte Cotugno reservoir. An analysis of volumes stored in this reservoir in months 286 and 287 
(Figure 6) indicates that management with DSS-SC makes available in those two months some 25 Mm3 more 
than those available following decisions provided by DSS-BF. In addition, it should not be forgotten that 
irrigation allocations for months from April to September are already fixed at the end of April (month 283 in 
Figure 6). In that month of April, storage at Monte Cotugno reservoir is quite low with DSS-BF and justifies 
issuing significant supply restrictions for the forthcoming season. Water storage with DSS-SC is still quite low, 
but allows DSS-SC issuing a less restrictive irrigation schedule, bringing to more restrained economic losses, 
as shown in Figure 5. This situation is not accidental: an examination of   the frequency of storage levels in the 
two reservoirs of the system shows (Figures 7 and 8) that, at least for drift, = 0.9 DSS-SC tends to exploit more 
resources from Pertusillo reservoir than from Monte Cotugno, keeping the latter fuller than done by DSS-BF. 
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Figure 5. Pattern of total costs along deficit 
periods in the simulation horizon.  

Figure 6. Simulated storage at Monte Cotugno 
reservoir in the months of the big failure of DSS-

BF for drift = 0.9 from April (month 283) to 
November (month 290) of year 24 of the 

simulation period 

Figure 7. Simulated non-exceedance frequency of 
storage levels at Monte Cotugno reservoir for drift 

= 0.9 

 
Figure 8. Simulated non-exceedance frequency of 
storage levels at Pertusillo reservoir for drift = 0.9

5. CONCLUSIONS 

The paper has presented an application of the multi-scenario DSS (DSS-SC) to a real-world situation. Results 
show that in terms of costs, DSS-SC compares quite favourably with the best possible option: a single scenario 
DSS with six-months ahead inflow forecasts coinciding with real inflows, DSS-BF. In one demand condition, 
described by a drift of 0.9, DSS-SC even outperforms DSS-BF. Investigation of this behaviour led to recognize 
that, at least for this drift, DSS-SC would manage the system so to keep the largest reservoir of the system full 
enough to allow issuing less restrictive irrigation supply reductions than its DSS-BF counterpart and would 
therefore reduce the associated scarcity costs. This thought-provoking situation, if one the one hand confirms 
that in these long-memory systems “abrupt” failures can be the consequence of long-term policies and decision 
styles, on the other hand stimulates the reflection that DSS performances can indeed depend on a number of 
different factors that need to be investigated in deeper detail. From this standpoint, a single historic time series 
is probably not enough to explore the different possible behaviours of the DSS. For this reason, a stochastic 
validation of DSS-SC, by simulating its behaviour through synthetic time series, is in order and is the next 
research objective.
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