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Abstract: Pertinent mathematical modelling plays pivot role in making groundwater protection and 
reclamation policies. Uncertain parameters and several basic phenomena in almost all branches of engineering 
and science can be modelled efficiently with the help of Stochastic Partial Differential Equations (SPDEs) and 
their behaviour can be interpreted more accurately. The intent of the present study is to use an efficient 
numerical approach based on Wiener chaos expansion to understand the stochastic nature of variables 
associated with groundwater flow. First and second order moments of concentration profile are calculated and 
plotted graphically. Obtained results are in good aggrement with those available in existing literature. 
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1. INTRODUCTION 

“We're all stumbling in the dark, and that makes for some pretty interesting collisions, where the fog is thickest, 
begin”               ― Marty Rubin 

Uncertainty quantification seeks to address the problems associated with randomness in real world systems 
and their probabilistic behaviour (Chernatynskiy, Phillpot, & LeSar, 2013). It is innate part of the real world. 
It is almost unexpected to get exactly the same outcome for two physical experimentsasmany significant inputs 
may be unknown or exorbitant. Uncertainty affects almost all aspects of engineering modelling and design 
(Tegegne, Kim, Seo, & Kim, 2019; Ye & Zhu, 2018). By acute understanding and gauging the sources of 
uncertainty, a researcher can make better decisions with known levels of confidence. Uncertainty that comes 
from the lack of knowledge called epistemic uncertainty and can be reduced by gathering more information 
and having more measurements. Another type of uncertainty that is inherent in the process called aleatory 
uncertainty and cannot be reduced. These uncertainties are characterized by probability distribution. Since it is 
hard to get exact information, uncertainties may be best modelled by appropriate assumptions and with 
adequate information available. Thus to develop a good mathematical model to account the fluctuations of an 
uncertain quantity is to to treat it as a stochastic quantity in a suitable space of stochastic distribution and to 
use suitable stochastic model.The validity of these models may be answered by comparing their speculations 
with reality and certified experimental data (Christakos, Hristopulos, & Miller, 1995).  

Though parameter estimation and uncertainty quantification are two key components of modern science-based 
forecasting, predictions can lead to more accurate results when governing equations model the physics of the 
problem. One of the standard example is to solve a moving boundary value problem for the unknown pressure 
of a fluid flow in which permeability of the medium is unpredictable and varies unevenly. When modelling 
Groundwater contamination (Natarajan & Kumar, 2018) results show that these tasks must cope with many 
degrees of freedom and large datasets. In groundwater hydrology, permeability is a random parameter that is 
inherent in the environment surrounding the system. Appropriate mathematical tool to deal with these 
uncertainties is to formulate the system as an SPDE. Stochastic permeability of a heterogeneous and isotropic 
medium is modelled as smoothed positive noise process by (H. Holden, Oksendal, Uboe, & Zhang, 1996) and 
solution of governing system of equations is obtained in a suitable space of stochastic distributions known as 
Kondratiev space (Kondratiev, Leukert, & Streit, 1996). 

Numerous dedicated researchers and experts in hydrology (Helge Holden, Lindstrøm, Øksendal, Ubøe, & 
Zhang, 1993; Serrano & Unny, 1987; Xu et al., 2018) accelerate the research on SPDEs. Stochastic 
differential equations are being used for modelling hydrological systems for a long time (Gupta, Bhattacharya, 
& Sposito, 1981) and still the researchers are actively involved to find the optimal solution strategies to deal 
with irregularities (Asmuth & Bierkens, 2005; D'Odorico, Laio, & Ridolfi, 2005; Peterson & Western, 2014). 
These SPDEs are either driven by space-time Brownian motion (Kalpinelli, Frangos, & Yannacopoulos, 2011; 
Kulasiri, 2013) or more generally, space-time Levy process (Arne, Oksendal, & Frank, 2004; Chen, Rozovskii, 
& A Shu, 2019) and solved analytically as well as numerically in several monographs and research articles. 
Brownian motion is defined as the irregular movement of particles suspended in a fluid. It is a continuous 
adapted process defined on some probability space. The motion identified is due to the statistical fluctuations. 
A stochastic process 𝐵 = {𝐵(𝑡): 𝑡 ≥ 0} having continuous random path is called standard Brownian motion if 
𝐵(𝑡, 𝜔) = 0 for a realization 𝜔  at  𝑡 = 0 and the increments of Brownian motion are independent and normally 
distributed with mean zero and variance (𝑡𝑖+1 − 𝑡𝑖) for all 𝑖 ≥ 0. The stochastic variation of 𝐵(𝑡, 𝜔) at time 𝑡 
is determined by Gaussian probability distribution which has a zero mean for all values of  𝑡 . Whereas a 
stochastic process 𝑋 = {𝑋(𝑡): 𝑡 ≥ 0} is said to be Lévy process if 𝑋(0) = 0 almost surely and its increments 
over non-overlapping time intervals are independent. In Lévy process for any 𝑡𝑖 < 𝑡𝑖+1,  𝑋(𝑡𝑖+1) − 𝑋(𝑡𝑖) is 
equal in distribution to 𝑋𝑡𝑖+1−𝑡𝑖

. Detailed theory of SPDEs and the related concepts can be found in (Da Prato 
& Zabczyk, 2014; H. Holden et al., 1996; Z. a. Zhang, 2017).  

Speedy development of fast computer processors enable the researchers to make accurate predictions for more 
real world systems and competitive frontier of engineering design has moved on to quickly predicting the 
behaviour of these systems when subjected to uncertain inputs. In SPDEs, uncertain quantities can be 
characterized using probability theory either using random sampling by Monte Carlo (MCMC) based methods 
or by polynomial chaos methods such as Wiener-Hermite chaos (Luo, 2006; Z. Zhang, Rozovskii, Tretyakov, 
& Karniadakis, 2012). 
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In the present work, our prime focus is on modelling the stochastic quantity in suitable mathematical frame 
work and developing efficient numerical analogy of computationally expensive numerical models. In this 
paper, we consider groundwater contamination flow governed by standard advection dispersion equation. 
Wiener chaos expansion (WCE) is used to characterise the random fluctuations in the stochastic quantity. 
Wiener chaos or simply polynomial chaos play an important role in modern probability theory. The 
fundamental concept of using this method is to develop the solution as part of an infinite series that may 
converge in Wiener chaos space that contain useful information on the statistical properties of the random 
process generated by SPDE. Wiener chaos is a non-sampling technique to characterize the evolution of 
probabilistic irregularity in a dynamical system. The advantage of using this approach lies in the fact that 
wiener chaos coefficients can be calculated by reducing the uncertainty propagator into lower triangular matrix. 
The fundamental concept of using this method is to develop the solution as part of an infinite series that may 
converge in Wiener chaos space. Thus, this technique works as an efficient analytical and theoretical tool to 
study current and peculiar kind of solutions. The paper is organised as follows: 

Section 2 explains the basic concepts and theory of Wiener-Hermite chaos expansion. Development and 
implementation of the theory is described in section 3 and deals with the proposed algorithm and its numerical 
implementation to the stochastic partial differential equation. Discussion and numerical results are elucidated 
in section 4. Finally upshots are given in section 5. 

2. WIENER-CHAOS EXPANSION (WCE)

Based on Cameron-Martin Theorem (Cameron & Martin, 1947), the random solution of an SPDE can be 
represented in terms of an infinite series known as Wiener chaos expansion. This expansion can separate the 
deterministic effects from the randomness in the random solution. The deterministic coefficients in this 
expansion are called Wiener chaos coefficients and can be obtained by solving a Wiener chaos propagator, 
which is a deterministic system and can be solved using standard numerical methods. Unlike in Monte Carlo 
simulation, there is no need to generate thousands of random numbers to solve an SPDE. The WCE propagator 
is solved once and based on its Wiener chaos expansion, we can construct the realizations of the random 
solution. One key point to keep in mind is that we need to design a truncation policy for the Wiener chaos 
expansion  to solve this infinite system of equations. Let us now explain the concept of Wiener chaos expansion 
mathematically. Given a complete probability space ( , , )  , where  is the  -algebra generated by the

set of i.i.d. Gaussian random variables 1{ }i i  and    is a probability measure in ( , ) .Let us denote the

set of all multi-indices by in which 1 2 0( , ,......) N with only finitely 0i  . Also 

1
i

i
 



  and  if i i i ;

1 1 2 2 0: ( , ,......) 1, , Ni

According to Cameron-Martin Theorem (Cameron & Martin, 1947), any function 2 ( )f L  can be uniquely 
expressed as Wiener Chaos expansion - 

f f H 


    (1) 

and 2

2 2
( )

!
L

f f







 , f  are the deterministic functions known as th Wiener chaos expansion 

coefficients of function f and the stochastic term { }H forms a family of complete orthonormal basis for 

square integrable space 2 ( )L  and is given as 

1

{ } { }
i i

i

H H    (2) 

and E[ ] !H H in which ( )nH are the Hermite polynomials for 0 ,n x

More details about these polynomials and the orthonormal basis can be found in (H. Holden et al., 1996).
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3 DEVELOPMENT OF THE SOLUTION ALGORITHM 

A stochastic evolution equation with white noise/Brownian motion forcing is written in general form as- 

L ) ( , )t tf f x t dW(    (3) 

Where L is the linear/nonlinear differential 
operator in space such as Laplacian operator in 
case of stochastic advection dispersion equation,  

( , )x t is the random forcing term and tW is the
Brownian motion. Figure (1) shows one sample 
realization of Brownian motion. 

Let us consider the groundwater contamination 
flow equation, subject to white noise input given 
by (4) 

Figure 1. Realization of a sample path of

Brownian motion at different time instances 

2

2

( , ) ( , )( , ) ( )C x t C x tdC x t dt dW t
x x

 
 

 
 

   (4) 

where ( , )C x t represents the concentration of mass transfer,   is the diffusion coefficient and second term on 
the right hand side of (5) shows the velocity field with white noise forcing. Integral form of (5) is 

0
0

( , ) ( ) ( , ) ( ) ( , ) ( )
t

xx xC x t C x C x s ds x C x t W t       (5) 

whereas the deterministic initial condition is taken as 0( ,0) ( )C x C x . 

Polynomial chaos expansion based on Cameron-Martin theorem  is applied to develop the numerical solution 
for (5). Let the solution of this type of equation is given by a random process : ( , )C C x t . Computational 
procedure to find the solution is as follows: 

 Express the solution in terms of an infinite series called Wiener-Hermite chaos expansion as in(1)
( , ) ( , ) ,C x t C x t H t T 



      (6) 

where ( , ) [ ( , ) ]C x t E C x t H  , we need to calculate the deterministic functions ( , )C x t  known 
as Wiener chaos coefficients. 

 Multiplying both sides of equation (5) by H , taking expectation and using orthogonality of H ,
we get

0 { 0} { }
10

( , ) ( ) ( , ) ( ) ( , ) ( )
i ij

t

xx x i
i

C x t C x I C x s ds x C x t I B s ds    


 



       (7) 

In which { 0}I  is the indicator function which is unity for zero value of  and zero otherwise;

[ ] ,i j ijE i j   and ( )iB s are the orthonormal base in 2 ( )L  and can be choosen as 
trigonometric functions. 

 Define the Gaussian random variables

0

( ) ( )
T

i kB t dW t   and Hermite polynomials H for multi-indices  . 
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 The system of partial differential equations of WCE coeffients is given by (8) and can be written as

{ }
1

( , ) ( , ) ( ) ( , ) ( )
i ijxx i

i
C x t C x s x C x t I B s

t x    






 
 

 
 (8) 

This is an infinite system of partial differential equations and we truncate it at finite terms for finite 
Gaussian random variables, say p  and order of Hermite polynomials, say, 𝑁. The truncated WCE is 
given as 

,
1

( , ) ( , ) ( ),
i

p

p N i
N i

C x t C x t H t T 



 

       (9) 

Order of truncation error and convergence of the scheme is explained in (Luo, 2006). 
 Reconstruct the moments from the solution of deterministic propagator given by (7). Mean and

variance of the truncated function are obtained as:

,

2
, 0 ,

, 0
[ ( , )] ( , ); var[ ( , )] ( , )

p N

p N p NE C x t C x t C x t C x t
  

   (10) 

Total number of terms in the truncation is 
!

! !
p N
p N

. To avoid so many coefficients in 

computation, (Luo, 2006) used sparse truncation which reduced the number of WCE coefficients 
dramatically. 

4. NUMERICAL RESULTS AND DISCUSSION

For numerical simulation using proposed method, we take 0.002, 0.5T and 0.5 . The
order of convergence of the method is explained in (Luo, 2006)and error induced due to truncation of 

the infinite series is 3/2( / ) .O T P  It has also been observed that WCE method converges 

exponentially for polynomial order  𝑁 and only algebraically for Gaussian random variables 𝑝. 

We considered five Gaussian random variables i.e., 5p and truncate the WCE propagator for 

1,2N and 3 . Thus, total number of WCE coefficients are 6, 21 and 56 respectively. These 
numbers can be reduced by using sparse truncation. Figure (1) illustrates the mean obtained using all 
three cases and compared with the solution obtained by Monte Carlo simulations with 105 realisations.
It has been observed that the WCE coefficients decay quickly as the order of polynomials increases.As 
the order of Wiener-Hermite polynomials increased, decay rate of WCE coefficients is high and
depend on lengh of interval T and variability of . Variance solution for Wiener chaos expansion 
using third order polynomial truncation is plotted in figure (2). Graph shows reasonable agreement of 
the proposed method with popular method of solution.

Figure 1. First order statistical moment by 
WCE method with different WCE 
coefficients.The first order approximation can 
not provide accurate results for higher order 
moments. Moreaccurate results are achieved 
by using second and higher order 
approximatins 

Figure 2. Second order statistical moment by 
WCE method with third order polynomial 
approximations compared with Monte Carlo 
simulations with 105 realisations. 
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Figure 3.  Concentration profile at three different  
values of σ . Large perturbation values results in  
high irregularities in concentration. Asymptotic 
values have more fluctuations for large values of σ 

Figure 4. 3D mesh plot for concentration 
profile at four different positions at 
different time instances 

Concentration profile at 0.5x   for different values of are plotted in figure (3). It is observed 
from the graph that the converging values of concentration  are lower for large purturbations. Figure 
(4) is the 3D mesh plot for concentration profile at different positions for 0.5   and almost
identical results are obtained except smoothening of the asymptotic values.

5. CONCLUSION

In this work, Wiener polynomial chaos expansion method is employed to solve one dimensional 
groundwater flow equation. Using this approach, we got results analogus to the results obtained by 
Monte Carlo method but with less computational time and efforts. However, the amount of 
computational effeort depends on the choice of basis and the technique used to solve deterministic 
system of equations. It is also observed that WCE coefficients diminish with higher rate by increasing 
N as compared to increasing p . Thus, this approach can be used as a substitute to Monte-Carlo type 

methods under specified boundary and initial conditions.  
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