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Abstract: The widespread presence of spatial and temporal variability in rainfall is well known. However, 
this variability can not be captured by point gauge measurements alone. An accurate representation of this 
variability is crucial for hydrological and meteorological applications. Precipitation information is an essential 
input for all hydrological models, but can be especially challenging in regions where no or very few rain gauge 
stations are established. Moreover, the uncertainties involved in these rainfall inputs are usually not considered 
or ignored in the hydrological simulations. Uncertainty in precipitation input arising from errors in spatial 
representation, measurement or estimation accuracy, can create uncertainty in the streamflow estimation. In 
such cases, the use of high resolution rainfall ensembles can play crucial role in modelling the rainfall-runoff 
relationships, particularly for high flows or flash floods. This study aims to characterise the hydrological 
uncertainty involved in the high flow simulations using rainfall-runoff models. 

This study focuses on characterising uncertainty in rainfall-runoff model outputs through the application of 
ensemble precipitation estimates. We demonstrate the results for selected events in the Macleay River Basin 
using a simple rainfall-runoff model. The basin is situated in the New South Wales (NSW), mid-north coast of 
Australia and is prone to flash floods. Historically, flooding in the lower Macleay Valley occurs at every 2 or 
3 years, and the largest floods have occurrence interval of 100 years. We also explored the response of basin 
area on this uncertainty and the cascading of this uncertainty from upstream to downstream of the basin. 

The GR4H model, which is an hourly implementation of GR4J, is merged with Muskingum Routing in this 
study. We used GPM (Global Precipitation Mission) precipitation data at 10km x 10km spatial resolution 
further downscaled to 2km x 2km spatial resolution for three years (2015-2017). Further, radar data along with 
the GPM precipitation is used to create 50 member ensemble rainfall estimates at 2km x 2km spatial and hourly 
temporal resolution.  In order to analyse the impact of rainfall uncertainty on streamflow we selected some of 
the high flows events. The three sub-basins having an area between 377-860 km2 along with the Macleay Basin 
(~8,000 km2) is used to run the simulations. Further, we compared and contrasted the runoff generated at the 
outlet by grid-wise simulations, basin averaged simulation, and simulations from ensemble rainfall as input 
with the observed streamflow.  

The results show that the grid-wise streamflow generation are comparatively better in capturing the peak flow 
events in the Macleay Basin and sub-basins than the basin-wise streamflow output probably due to the use of 
the same parameter throughout the simulations, lower averaged streamflow at each sub-basins, and more 
amount of overall losses at the basin scale. The observed peak flow is within the range of streamflow simulated 
using ensemble rainfall for all the basins.  

The application of interest to this study is the use of ensemble precipitation forecasts to generate ensemble 
streamflow forecasts. This study shows that the rainfall-runoff modelling with ensemble precipitation inputs 
can considerably reduce the amount of uncertainty in simulation results, particularly in data-sparce regions. 
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1. INTRODUCTION 

Every hydrological model that depicts real-world scenarios and processes within, are based on a set of 
assumptions and thus, subject to various sources of uncertainties. These uncertainties can affect the utilisation 
of hydrological models in various applications like water resources management, hydrological forecasting, 
irrigation planning and hydrologic design (Renard et al., 2010; Srivastava et al., 2017; Paul et al., 18). Hence, 
the uncertainty quantifications in hydrological models understand error charactersitics and their impact on the 
quality of hydrological model estimates. Though many studies have been conducted that deal with uncertainty 
in hydrological space (Renard et al., 2010; Beven, 2016), implementing these methods in an appropriate 
manner is still a challenging task. Among the different sources of uncertainties affecting rainfall-runoff model 
estimation, the rainfall input is often significant. Precipitation inputs to models, if not a representation of actual 
rainfall, could results in erroneous and highly uncertain streamflow predictions (Blöschl and Sivapalan, 1995; 
Bárdossy and Das, 2008; Van Dijk and Renzullo 2010). There have been a number of attempts to describe the 
errors included in rainfall inputs, but it is complicated due to the various uncertainties involved within 
(Bardossy and Das, 2008). In addition to the discrepancy in rainfall amount, the uncertainty arising due to the 
inability of input rainfall data to accurately represent the spatial variability in rainfall is important yet 
overlooked due to limited measurements.   

Enhancement in rainfall estimations via radars, satellite observations (Liu, 2016), and global or regional 
reanalysis (Acharya et al., 2019b; Beck et al., 2017) have provided vital information on spatio-temporal 
variability of rainfall at fine spatial scales (~10 kms). These spatial rainfall estimates have potential to improve 
streamflow simulation because the spatial variability of rainfall is captured better than sparse distribution  of 
gauge measurements. However, in practice, such high-resolution rainfall can exhibit bias in magnitude and 
spatial variability to some extent as they are not a direct measurement of the spatial rainfall (Acharya et al., 
2019a). In this regard, the uncertainty arising due to the spatial distribution could be quantified by adopting an 
ensemble approach. In this approach, we assume that generating an ensemble of rainfall scenarios by blending 
rainfall from multiple sources captures uncertainty in spatial rainfall. This allows us to estimate the uncertainty 
arising solely due to spatial variability of rainfall. This approach can be useful in capturing short-duration 
runoff events like flash floods and the intra-storm variability responsible for different runoff processes.  

Overall, the aim of this study is to characterise hydrologicalmodel uncertainty involved in the high flow 
simulations using a simple rainfall-runoff model and ensemble rainfall input. Further, we explore the response 
of area of the basin and sub-basin on the uncertainty and how this uncertainty cascades from the upstream to 
downstream of a basin. We use the Global Precipiation Mission (GPM) rainfall product and rainfall radar data 
to create a rainfall ensembles in order to see the impact of ensemble input on high flows in the entire Macleay 
Basin and its three sub-basins of different sizes. We introduce the study area in Section 2; thereafter, the 
description of the ensemble generation and rainfall-runoff modelling is explained in Section 3. We present and 
discuss results, and summarise the conclusions in the subsequent sections.   

2. THE STUDY SITE DESCRIPTION 

The generation of ensemble requires GPM and radar rainfall, and therefore the selected study site should have 
radar rainfall coverage. Therefore we selected the Macleay basin which satisfies the above criteria and also had 
a few large events in past three years required for this study. The Macleay Basin, located in the New South 
Wales, extends from 30.00°S to 31.35°S and from 151.39°E to 152.41°E (Figure. 1). This basin is 
approximately 8,000 km2 with larger areas of the northern tablelands, a sparsely populated region and the 
coastal area extending from foothills to coastal plains. The Macleay River Basin is bounded by the Great 
Dividing Range and the inland catchments of 
the Gwydir and Namoi Rivers in the west, 
while the coastal Hastings and Manning River 
catchments lie in the south and the coastal 
Clarence, Bellinger and Nambucca River 
catchments lie along the north sides. Further, 
the elevation of the catchment varies from 130 
m in the lower reaches up to 1550 m in the 
northern and southern mountain ranges. The 
annual average precipitation is approximately 
850 mm, which varies spatially within the 
catchment from 500 mm to 1100 mm. Monthly 
mean maximum temperature of the catchment 
goes up to 30°C during summer and 20°C in 

Figure 1. The Macleay catchment, study area  
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the winter, while monthly mean minimum temperatures in the summer and winter goes to 16°C and 6°C 
respectively. The Macleay River basin has a larger variability in its flow regime, and flooding may occur at 
any time of the year. Flooding in the Lower Macleay valley occurs every 2 – 3 years, and the largest floods 
have occurrence interval of 100 years (Ferguson et al. 1999).                                                                                    

3. METHODOLOGY 

In this study, we use GPM precipitation data at 10km x 10km spatial resolution further downscaled to 2km x 
2km spatial resolution for three years (2015-2017). Further, radar data along with the GPM precipitation is 
used to create 50 member rainfall ensembles at 2km x 2km spatial and hourly temporal resolution. A conceptual 
rainfall-runoff model, GR4H, coupled with Muskingum Routing (Overton, 1966) is used with observed 
precipitation and rainfall ensembles to generate streamflows at the basin outlet. The detailed description of 
GR4H model along with rainfall ensemble generation is given in further sub-sections.  

 

3.1 Model Description 

GR4H, an empirical rainfall-runoff hydrological model (Le Moine et al., 
2008) is an hourly version of GR4J (Perrin et al., 2003) having two water 
storages, namely, production storage and routing storage. This model runs 
on an hourly time step and requires only two inputs, hourly rainfall (P) 
and hourly evapotranspiration (ET). It has only four parameters which are 
needed for optimisation during the calibration process. Firstly, the model 
distributes P by ET in order to estimate the effective rainfall (Pn) and net 
evapotranspiration (ETn), given by:  

If P > ET,  

 Pn = P-ET and ETn = 0     (1) 

If P< ET,  

  Pn = 0 and ETn = ET-P      (2) 

The Pn is further redistributed among the storage (Ps) and surface runoff 
(Pn-Ps) (Figure 2).  The Ps moves towards the production storage along 
with ET from the storage and percolation.     
                                                     Figure 2. GR4H model description 

Thereafter, 90% of the total surface runoff is routed by the unit hydrograph one (UH1) and the routing storage. 
The rest 10% of the total surface runoff is routed by unit hydrograph two (UH2). The net capacity of the 
production storage (X1) is one of the major calibrating parameter. Ground water exchange coefficient (X2) is 
the parameter which influences routing storage. Routing storage (X3), the amount of water stored in soil 
porous, and this value depends on type and humidity of soil. Time to peak (X4) ordinate of the hydrograph unit 
UH1 (hour) is the fourth calibrating parameter.  

 

3.2 Ensembles Generation 

In order to generate the required stochastic ensembles from radar estimates of precipitation, a simplified 
method is used by separating the radar rainfall image to signal and noise (Pegram et al., 2011; Seed et al., 2013; 
Nerini et al., 2017). Ensembles represent the spatial uncertainty of rainfall analysis such that it can work in the 
real-time (i.e. with 10 minutes). The descriptive flowchart for the ensemble rainfall (2km x 2km) generation 
from GPM precipitation (10 km x10 km)  is shown in Figure 3. First, we considered rainfall analysis (Ra) and 
reference rainfall dataset (GPM in this study) (Rr) for bias correction based on empirical cumulative distribution 
function (ECDF) matching. Thereafter, the logarithmic transformation is applied to Ra and the respective 
exponential coefficient is determined (Niemi et al., 2016). Based on the power law of rainfall, the new spatial 
structure is defined. This spatial field is combimed with Gaussian white noise, convolved with power-law filter,  
to generate the ensemble members of perturbed rainfall. The generated ensembles are subjected to satisfy the 
reliability criteria. This reliability criteria is defined such that mean square error of ensemble mean is 
approximately equal to the ensemble variance (Renzullo et al., 2018).  
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Figure 3. Ensemble generations for the GPM datasets 

 

3.3 Simulations and different streamflow generations 

The three sub-basins and the main basin where simulations are calibrated is shown in figure 4. The three sub-
basins are namely, sub-basin id – 206025 (646 km2), sub-basin id – 
206014 (377 km2), and sub-basin id – 206018 (860 km2). The GR4H and 
Muskingum combined model is initially calibrated by using GPM data 
at sub-basins averaged at the outlet of Macleay Basin. Thereafter, the 
gridded rainfall is used as an input and the runoff is generated 
corresponding to the high streamflows. Further, in order to study the 
effect of rainfall uncertainties on the runoff generation, rainfall 
ensembles (50 in total at 2km x 2km spatial resolution and 1 hour as 
temporal resolution) are used as input to the model. The conceptual 
framework of the methodology followed in this study is given in the flow 
chart (Figure 5). Further, we compared and contrasted the runoff 
generated at the outlet by grid-wise simulations and basin averaged 
simulation with the observed streamflow at the outlet for peak flows 
(21/08/2016-31/08/2016 in this study). Thereafter, the ensembles are 
compared with the observed and GR4H simulated streamflow. 
             

               

         

 

 

 

 

 

 

 

 

4. RESULTS  

4.1      Comparison of sub-basin wise and grid-wise streamflow with observed streamflow 

A comparison of high flow for the entire basin, its sub-basins obtained from grid-based and sub-basin based 
simulation is shown in Figure 6. It is observed that grid-wise simulations over-predicted the streamflow in 
comparison to the observed streamflow for the Macleay basin and other two sub-basins (Basin 206014 and 
206018) except one basin i.e. basin 206025. However, basin-wise simulations underestimate the runoff in all 
the sub-basins and Macleay basin. The maximum streamflow generated in the Macleay Basin during the shown 
study period is 600 cumec (grid simulations) while minimum streamflow is 300 cumec (basin-wise 
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Figure 4. Sub-basins representation    

 

Figure 5. Conceptual framework for the methodology 
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simulations). The other three sub-basins have streamflow ranging between 80 cumec (grid-wise simulation) to 
30 cumec (basin-wise simulations). The lower values of runoff generation are obvious due to the smaller 
catchment size of the sub-basin. The grid-wise streamflow better simulated with observed streamflow as 
compared with sub-basin wise streamflow generations.  

 
Figure 6. High flow comparison for observed streamflow with simulated streamflow at sub-basin and grid-

wise 

4.2 Ensemble streamflow generations and its analysis 

The ensemble rainfall in the form of regular grid of size (2km x2 km) is used as input to the model. Based on 
the model configurations described in Section 4.1, the resulting runoff simulated for large events. Figure 7 
shows  observed and simulated streamflow for an event generated by rainfall ensembles (50 members) using 
grid based simulation, and deterministic rainfall field using grid-based and sub-basin based simulation at 
Macleay Basin and its three sub-basins. The peak of ensemble streamflow ranges between 400 cumec to 800 
cumec in Macleay Basin where observed streamflow reached its maximum ~450 cumec. This shows that the 
ensemble streamflows captured the peak flows. Similarly, in the other three sub-basins also, the ensembles 
have captured the observed streamflow to a greater extent in comparison to deterministic sub-basin wise and 

grid-wise simulations. 

 Further, the ensemble 
streamflow also captures 
the grid-wise streamflow in 
all the basins. Although the 
ensemble streamflow 
could capture the pattern of 
observed streamflow, the 
peak runoff and time to 
reach the peak streamflow 
varies for Macleay basin 
and other three sub-basins. 
The boxplots for peak flow 
at each of the sub-basins 
and the Macleay Basin and 
time to reach this peak is 

shown in Figure 8.     
   

Figure 7. Ensembles comparison for high flow          
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The mean peak flow of ensemble (0.25 mm/hour) is approximately comparable to the observed peak flow (0.22 
mm/hr) in Macleay Basin. 
However, the deviation increases 
between the ensemble mean peak 
flow and the observed peak flows 
at other three sub-basins. Further, 
it is observed that ensemble 
streamflow could not capture the 
time to peak in any of the sub-
basin or Macleay Basin. It may be 
attributed to the difference in 
basin size.   

      
 

5. DISCUSSION AND CONCLUSION 

The grid-wise streamflow generation is comparatively better in capturing the peak flows in the Macleay Basin 
and sub-basin than the basin-wise streamflow output. It may be attributed to the fact that the gridded 
simulations used the same parameter throughout the simulations. As it is a conceptual hydrological model, the 
grid-based modelling results do better in capturing hydrological flows than basin averaged analysis (Srivastava 
et al., 2018; Paul et al., 2018; Tran et al., 2018).  Further, this can also be contributed to smaller averaged 
streamflow at each sub-basins and more amount of overall losses at the basin scale.  The ensemble streamflow 
have captured the observed streamflow comparatively better than the other simulated streamflow. Ensemble 
precipitation helps in generating a range of outputs which may better help to provide a nearly accurate range 
of high flows in the basin as shown in previous studies (Shrestha et al., 2015).   

This study showed the role of input uncertainties in hydrological modelling and how the uncertainty in 
precipitation may be captured by using ensemble methods. The observed peak flow is seen to fall within the 
range of streamflow simulated using ensemble rainfall for all the basins. This means that the rainfall ensembles 
can be successfully applied to establish sub-daily operational streamflow forecast systems. The application of 
ensemble generation approach could also help reduce the uncertainty due to spatial dispalcement in rainfall 
field (Acharya et al., 2019a) and potentially improve the hydrological modelling. In addition to rainfall 
uncertainty, one can further incorporate other sources of uncertainty (parameter and initial condition) in 
hydrological modelling. The statistical analysis of the simulation results on the entire Macleay Basin and its 
sub-basins show significant differences in model performance at basin-wise, grid-wise, and ensemble rainfall 
as input.   
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