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Abstract: Bayesian inference is a well-regarded approach for diagnostic model evaluation that is often 

applied to hydrological models to constrain parameters and estimate uncertainty within a statistical framework. 

Typically, Bayesian uncertainty analysis is carried out using the Generalised Likelihood Uncertainty 

Estimation (GLUE) or Markov Chain Monte Carlo (MCMC) sampling. Approximate Bayesian Computation 

(ABC) is alternative set of likelihood-free Bayesian methods that have been gathering interest in many fields 

including astrophysics, population genetics and biology.  

The main appeal of ABC is that is the requirement for a formal likelihood function is replaced by one or more 

summary statistics that compare the simulated model to the observed data. ABC works in situations where an 

analytical likelihood function is either unavailable or intractable. Instead of evaluating the likelihood function, 

ABC only has to be able to sample from the likelihood function in an empirical fashion. This broadens the 

class of problems to which statistical inference can be applied.  

In practice, the appeal of the ABC method is limited somewhat due to its requirement for a large number of 

model evaluations. Because ABC is essentially a rejection sampling method, when the overlap between the 

prior and the posterior is poor, the sampling efficiency can be very low and it may be necessary for hundreds 

of thousands or even millions of model evaluations to be run to collect an appropriate number of accepted 

samples to construct a statistically informative posterior. If the model runtime is significant, ABC rejection 

sampling can easily be rendered impractical. In this paper a hybrid method is developed that serves to retain 

the flexibility of ABC while drastically reducing the computational effort required. The first component of the 

hybrid approach is to employ Sequential Monte Carlo sampling (SMC) to improve the sampling efficiency and 

reduce the total number of samples required. Secondly, the primitive model is replaced by a surrogate model 

that can accurately reproduce the results of the original model at a fraction of the computational cost. In this 

case, XGBoost, a gradient boosted regression tree machine learning algorithm, is used to construct the 

surrogate models.  

Employed together, SMC-ABC and XGBoost trained surrogate models offer an accurate and efficient 

framework for model parameter inference and uncertainty analysis. As a demonstration, the proposed method 

is applied to a four parameter GR4J distributed rainfall runoff model to estimate marginal model parameter 

probability density functions for parameter identification and uncertainty analysis.  
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1. INTRODUCTION 

It serves no useful purpose to imagine that environmental models are mechanistically faithful representations 

of the processes that they seek to emulate. In the case of conceptual rainfall-runoff models (CRR), structural 

deficiencies along with noisy observational forcing and response data are significant contributors to uncertainty 

of model predictions. Given this practically unavoidable condition, it is important to be able to quantify the 

magnitude of uncertainty of CRR models to properly assign a justifiable level of confidence in their results.  

The most common approach to quantifying CRR model uncertainty is Bayesian inference as formalised in 

Bayes’ Theorem which can be expressed as 

  𝑝(𝜃|𝐷) ∝ 𝑝(𝐷|𝑀(𝜃))𝑝(𝜃) (1) 

where D is the available data, M is the model and 𝜃 is a set of model parameters. Bayes’ Theorem states that 

the desired posterior parameter probability given the available data, 𝑝(𝜃|𝐷), is proportional to the product of 

a prior parameter probability, 𝑝(𝜃), and the likelihood for the data 𝑝(𝐷|𝑀(𝜃)) given the model evaluated with 

parameters 𝜃. The elegance of Bayes’ theorem belies the fact that although the prior can usually be easily 

decided upon based on some understanding of the behaviour of the model, the likelihood is typically unknown, 

at least in an analytical form. In practice, assumptions about the form of the likelihood function are often made 

and formal statistical models are employed as a convenience. It can be argued, however, that the reliance on 

these assumptions can be problematic, particularly when model residual errors are correlated, nonstationary 

and non-Gaussian.  

Approximate Bayesian Computation (ABC) is a so-called likelihood-free method for Bayesian inference which 

eliminates the requirement for a formal likelihood function. When provided with a sufficient summary statistic 

describing qualities of the model, ABC empirically estimates the Bayes’ posterior (Beaumont 2019). The ABC 

algorithm imposes a performance-threshold based on the summary statistic that serves to identify and reject 

regions of the prior parameter space that lead to poorly performing models. If the summary statistic is sufficient 

and the rejection threshold is suitably assigned, the distribution of accepted parameter combinations sampled 

from the prior will provide a good estimate of the true Bayesian posterior .  

ABC does come with some caveats that may inhibit its practical application. Primarily, the computational effort 

required for rejection sampling may easily become unmanageable. The classical ABC rejection sampler can be 

highly inefficient and the number of model runs required to build an approximation of the posterior density 

function can number in the hundreds of thousands. This paper investigates two strategies for reducing the 

effective computation burden of ABC sampling by orders of magnitude. The first is to improve the sampling 

algorithm to reduce the total number of model evaluations required. This is achieved through adaptive 

sequential Monte Carlo (SMC) sampling (Beaumont et al. 2009). The SMC-ABC algorithm iteratively adapts 

the summary-statistic rejection threshold while reducing the rejection rate by increasing sampling from the 

high density region of the posterior (Price et al. 2018).  

Although SMC-ABC delivers welcome efficiency gains over simple rejection sampling, more drastic 

computation efficiencies can be realised by replacing the computationally demanding primitive model with an 

emulator or surrogate model. Surrogate models are evaluated rapidly and can be trained to reproduce the 

required summary statistics as a function of model parameters with satisfactory accuracy. In the present study, 

extreme gradient boosted regression trees (XGBoost) (Chen and Guestrin 2016) are trained for this purpose.       

Employed together, SMC-ABC and XGBoost trained surrogate models offer an accurate and efficient 

framework for model parameter inference and uncertainty analysis. As a demonstration, the proposed method 

is applied to a four parameter GR4J distributed rainfall runoff model to estimate marginal model parameter 

probability density functions for parameter identification and uncertainty analysis.  

2. METHODS AND RESULTS 

2.1. ABC Algorithm 

The aim of ABC is to sample from a posterior that is conditioned by observational data without any reference 

to likelihood functions. This is achieved by replacing the likelihood term in (1) by a comparison between 

observed (D) and simulated data expressed in terms of a summary statistic as shown below in (2) 

1064



Bennett, ABC for uncertainty analysis of rainfall-runoff models 

 𝑝(𝜃|𝐷)𝜖 ∝ ∫ 𝑀(𝒚|𝜃)𝟙(𝜌(𝑆(𝒚), 𝑆(𝐷)) ≤ 𝜖)𝑝(𝜃)𝑑𝒚 (2) 

where M is a model that given parameters 𝜃 generates 

the simulated data 𝒚. 𝜌(𝑆(𝒚), 𝑆(𝐷)) is a distance metric 

comparing the summary statistic evaluated for the 

simulated and observed data and 𝜖 is the acceptance 

tolerance. The distance metric may take in various 

forms but a simple Euclidean norm ‖𝑆(𝒚) − 𝑆(𝐷)‖ is 

quite often a suitable choice. The basic principle of 

ABC is that if the summary statistic is sufficient and 𝜖 

is small then sampling from 𝑝(𝜃|𝐷)𝜖 should give a 

good approximation of the true posterior 𝑝(𝜃|𝐷) 

(Marjoram et al. 2003; Sisson et al. 2007).  

One of the first applications of ABC was in the field of 

population genetics where the procedure depicted in the 

pseudocode of Algorithm1 was introduced (Pritchard et 

al. 1999). Although this routine is a perfectly adequate 

for sampling from 𝑝(𝜃|𝐷)𝜖 if 𝜖 is small and a high 

degree of mismatch between the prior and posterior 

distributions exists, the acceptance rate can be very low. 

When the runtime time for the model is significant, 

inefficient sampling may effectively render Algorithm 

1 impractical.  

ABC with Sequential Monte Carlo sampling (ABC-

SMC) (Toni et al. 2009) is a type of importance 

sampling (Del Moral et al. 2006; Liu and Chen 1998) 

that improves on the rudimentary ABC algorithm by 

enhancing sampling efficiencies. The resulting ABC-

SMC strategy is to sample iteratively from a sequence 

of distributions 𝑝(𝜃|𝐷)𝜖,𝑗 for decreasing 𝜖𝑗. The ABC-

SMC procedure is outlined in Algorithm 2 shows that 

as the acceptance tolerance is gradually decreased with 

each iteration, the algorithm learns from previous 

iterations where in parameter space the higher density 

region of the posterior distribution exists.  For each 

iteration, particle importance weights are calculated 

using an adaptive transition kernel, q, that depends on 

the variance of the particle population from the 

previous iteration. The weighting scheme has the 

function of minimising the Kullback-Leibler distance 

between the intermediate proposal and posterior density 

functions. Minimising the Kullback-Leibler distance 

will maximise the acceptance rate (Beaumont et al. 

2009; Turner and Van Zandt 2012). An average 50-fold 

improvement in sampling efficiency by using ABC-

SMC compared to ABC-Rejection has been reported 

(Toni et al. 2009).   

2.2. XGBoost  

Even with the significant sampling efficiency gains that can be realized through sequential Monte Carlo 

sampling, the number of model evaluations required to satisfactorily populate a posterior probability 

distribution through ABC can still be prohibitively high. In the experience of the GBR catchment modelling 

team, a single catchment model run can take anywhere between a few minutes to two hours to run. Replacing 

the primitive catchment model with a well-trained emulator or surrogate model has the potential to reduce run 

times by several orders of magnitude. In the present case, the focus is on identifying a suitable emulator for 

estimating ABC summary statistics as a function of model parameters. Machine learning methods have been 

widely applied as emulators of deterministic models and include neural networks, Gaussian processes, 

Algorithm 2 ABC-SMC 

At iteration j = 0, 

Set 𝜖0 ← 𝜖 

for i = 1,…,N do 

while 𝜌(𝑆(𝒚𝑖) − 𝑆(𝐷)) > 𝜖0 do 

Sample 𝜃𝑖
∗ from the prior 𝑝(𝜃) 

Simulate a dataset 𝒚𝑖~𝑀(𝜃𝑖
∗) and evaluate 

summary statistic 𝑆(𝒚𝑖) 

end while 

set 𝜃𝑖,0 = 𝜃𝑖
∗ 

set weights for each particle 𝑤𝑖,0 ← 1 𝑁⁄  

end for 

set the covariance  𝜎0
2 ← 2Cov(𝜃1:𝑁;0) 

At iteration j > 0 

for j = 1,…, J do 

Set  to 𝜖𝑗 ← 𝑃70 𝜌(𝑆(𝒚𝑖) − 𝑆(𝐷)) 

for i = 1,…,N do 

while 𝜌(𝑆(𝒚𝑖) − 𝑆(𝐷)) > 𝜖𝑗 do 

Sample random 𝜃𝑖
∗ from previous iteration 

𝜃𝑖
∗~𝜃1:𝑁;𝑡−1 

Perturb 𝜃𝑖
∗ by sampling 𝜃𝑖

∗∗~𝑁(𝜃𝑖
∗, 𝜎𝑗−1

2 ) 

Simulate a dataset 𝒚𝑖~𝑀(𝜃𝑖
∗∗) and evaluate 

summary statistic 𝑆(𝒚𝑖) 

end while 

set 𝜃𝑖,𝑗 ← 𝜃𝑖
∗∗ 

set 𝑤𝑖,𝑗 ←
𝜋(𝜃𝑖,𝑗)

∑ 𝑤𝑘,𝑗−1𝑞(𝜃𝑘,𝑗−1|𝜃𝑖,𝑗 , 𝜎𝑗−1
2

)𝑁
𝑘=1

 

end for 

Set the covariance  𝜎𝑗
2 ← 2Cov(𝜃1:𝑁;0) 

end for 

 

 

Algorithm 1 ABC-Rejection 

Set tolerance 𝜖 

for i = 1,…, N do 

while 𝜌(𝑆(𝒚𝑖) − 𝑆(𝐷)) > 𝜖 do 

Sample 𝜃𝑖
∗ from the prior 𝑝(𝜃) 

Simulate a dataset 𝒚𝑖~𝑀(𝜃𝑖
∗) and evaluate 

summary statistic 𝑆(𝒚𝑖) 

end while 

set 𝜃𝑖 = 𝜃𝑖
∗ 

end for 
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polynomial regression, polynomial chaos expansions, radial basis functions and multivariate adaptive 

regression splines, random forests and generalised additive models to name some popular options (see Asher 

et al., 2015 for a review of surrogate models applied to groundwater modelling).  

Gradient boosted decision tree (GBDT) algorithms are a family of machine learning techniques that have 

emerged as a powerful tool for classification and regression applications (Roy et al. 2019). First introduced by 

Friedman (Friedman 2001), gradient boosting is a method for synthesising a statistical model from an ensemble 

of weak models. Put simply, gradient boosting progressively fits a sequence of models to gradually improve 

the estimate of the dependent variable. This is distinctive from the popular bagging technique where an 

ensemble of predictors are determined independently of each other. The basic idea behind the gradient 

algorithm is to create a series of new base-learners that are correlated with the negative gradient of the loss 

function that is associated with the entire ensemble. For GBDTs, base-learners are represented by decision 

trees.  

Several modern open-source GBDT toolkits have become available to popular modelling platforms in recent 

years. CatBoost (Prokhorenkova et al. 2018) and LightGBM (Ke et al. 2017) both have considerable support 

in the machine learning community, but for the current study the XGBoost package (Chen and Guestrin 2016) 

has been chosen. 

2.3. XGBoost Assisted ABC Method 

ABC demands an appropriate summary statistic to be defined to evaluate not only the goodness-of-fit of the 

model to the observed data, but also provide some information about the system behaviour (Vrugt and Sadegh 

2013). The proposed composite statistic in (3) includes the correlation coefficient, r, which directly compares 

paired values in the observed and simulated time series as well as the first three statistical moments that give a 

comparison of the centre, width and shape of the distribution of values across the entire time series. ,  and  
are respectively the mean, standard deviation and skewness of the time series data distribution and the 

subscripts m and o are for the modelled and observed data. a, b, c and d are weighting coefficients that can be 

adjusted to emphasise or attenuate the influence of each component of the summary statistic.  

𝑆 = √𝑎(𝑟 − 1)2 + 𝑏 (
𝜇𝑚

𝜇𝑜
− 1)

2

+ 𝑐 (
𝜎𝑚

𝜎𝑜
− 1)

2

+ 𝑑 (
𝛾𝑚

𝛾𝑜
− 1)

2

  (3) 

The form of (3) results in 𝑆(𝐷) = 0 so 𝜌(𝑆(𝒚𝑖) − 𝑆(𝐷)) conveniently becomes 𝑆(𝒚𝑖) in cases where the 

Euclidean distance metric is used.  

Although it would be possible to build a single surrogate model to estimate the composite statistic in (3), in 

practice more accuracy and flexibility has been achieved by building individual surrogate models for each of 

the components of the summary statistic 𝑟, 𝜇𝑚, 𝜎𝑚 and 𝛾𝑚 and then using these estimates to calculate the 

composite summary statistic 𝑆.  

2.4. Blencoe Creek Catchment Case Study 

Blencoe Creek is a small tributary to the Herbert River in North Queensland. A catchment area of 223.7km2 

reports to the Blencoe Falls hydrologic reference station GS116010A (Zhang et al. 2014). The catchment is in 

pristine condition with no modifications or regulated water use. A four parameter GR4J lumped hydrological 

model (Perrin et al. 2003) was built using the Source modelling platform using daily rainfall and 

evapotranspiration forcing data sourced from SILO (Jeffrey et al. 2001).  

The GBDT summary statistic emulator was constructed from training and evaluation data chosen using a Sobol 

sequence sampling design of experiment (Sobol 1967). 4096 GR4J models were evaluated distributed over the 

parameter ranges given in Table 1. As summarised in section 2.3, based on the training set of data, surrogate 

Table 1. GR4J model parameters and ranges 

Name Unit Range Description 

X1 mm 1.0 – 1500.0 Maximum capacity of production store 

X2 mm -10.0 – 5.0 Groundwater exchange coefficient 

X3 mm 1.0 - 500 1-day-ahead maximum capacity of the routing store 

X4 day 0.5 – 4.0 Time base of the unit hydrograph, UH1 
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models for each summary statistic component, 𝑟, 𝜇𝑚, 𝜎𝑚, and 𝛾𝑚 were constructed. The XGBoost python 

package (Anon 2019) was used to implement the GBDT machine learning algorithm. XGBoost 

hyperparameters were optimised using a Bayesian search method based on n-fold cross validation scores 

(Snoek et al. 2012). Overfitting of the surrogate models was avoided by using early stopping (Zhang and Yu 

2005) to limit the total number iterations in the GBRT gradient descent.  

The marginal posterior distributions for Blencoe Creek GR4J model parameters are shown in Figure 1. Each 

parameter is well identified with well resolved unimodal distributions. Ideally, parameters would not only be 

identifiable but also independent whereby each parameter value would not influence that of another parameter 

(i.e. not exhibit cross-correlation).  Bivariate parameter correlation plots in Figure 2 reveal a degree of positive 

correlation between X1 and X2 where a large portion of the X1-X3 plots is empty and thus indicate regions of 

non-behavioural parameter combination. There are weaker negative correlations between parameters X1 and 

X3 as well as X4 and X3 suggesting that these pairs of samples may tend to counterbalance each other in the 

streamflow model results. 

The expectation values of each parameter (taken as the mean of the marginal posterior distribution) along with 

the 95% confidence limits were used to synthesise the flow time series shown in Figure 3. A strong relationship 

 

Figure 1. Posterior marginal parameter density 

plots for the GR4J model. The thick black line 

represents the expectation value of the 

distributions and the red lines are placed at the 

95% confidence limits. 

 

Figure 2. Parameter correlation plots 

 

Figure 3. Predictive uncertainty plot for a selected time series range including the 1981 wet season. 
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between the modelled and observed streamflow data is evident with most of the observational data sitting 

within or on the perimeter of the predictive uncertainty interval.    

3. DISCUSSION AND CONCLUSIONS 

The application of a combination of machine learning regression methods and SMC-ABC to the parameter 

identification and uncertainty analysis of a rainfall runoff model has been demonstrated. This combined 

approach is designed to overcome practical sampling inefficiency problems associated with the ABC-Rejection 

algorithm. This is particularly pertinent in the case of GBR water quality models where model runtimes can 

range between 20 minutes and 2 hours per simulation on a typical workstation. Depending on the divergence 

between the parameter prior and conditional posterior distributions ABC may require hundreds of thousands 

or even millions of simulation runs in order to accumulate a suitably sized set of accepted samples for statistical 

analyses of the posterior. In the case presented in a companion paper where water quality parameters have been 

studied (Baheerathan and Bennett 2019) it is estimated that the computational effort for parameter inference 

and uncertainty analysis has been reduced by four orders of magnitude over ABC-Rejection sampling using 

the primitive model.  

In principal, once a suitable surrogate model has been built, it could be applied to a variety of Monte Carlo 

methods but generally speaking, some of the interesting features of the SMC-ABC approach to model 

parameter inference include; 

 Along with rejection sampling, the SMC-ABC sampler is not prone to becoming stuck in low 

probability regions of the posterior distribution surface. 

 Unlike rejection sampling (including GLUE), SMC-ABC is not burdened by sampling inefficiencies 

caused by large divergences between the prior and posterior distributions.  

 The empirical nature of the SMC-ABC sampler easily accommodates complex posterior distribution 

functions.  

 In contrast to MCMC samplers, SMC-ABC samples are not correlated and a burn in phase is not 

required by the algorithm. 

When a suitable surrogate model for estimating the summary statistic is available, SMC-ABC becomes 
an efficient and highly flexible method for Bayesian parameter inference and uncertainty analysis.  
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