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Abstract: Data assimilation (DA) in numerical weather prediction (NWP) has relied on observations sourced 
from variety of sources like radiosondes, dropwindsondes, meteorological sensors and remote sensing through 
satellites. The sensors used for collecting meteorological variables such as wind speed, wind direction, tem-
perature, relative humidity are designed to provide high quality observations. Additionally, a set of defined 
instructions must be followed for installation of such systems, with the presumption that the sensors will 
behave as defined in the user m anual. Due to the aforementioned r easons, firstly, these systems are expen-
sive to install and operate, and secondly, they cannot be installed at a large scale within cities, thus requiring 
alternative ways of sensing environmental conditions within such areas.

In recent times, Internet of Things (IOT), Big Data and Cloud computing has been attracting considerable 
attention. This has been made possible by the availability of high speed connectivity, ease of access to high 
quality computing resources at pay-per-use basis and the increased emphasis on informed decision making. 
Due to such developments, there has been increased diffusion of smart systems equipped with miniaturized 
sensors allowing such systems to adapt to their environmental conditions e.g., smart air-conditioners control-
ling the indoor conditions in response to the changing ambient environment. These disruptive technologies 
have led to the development of platforms such as Tulip1, Array of Things2 and Dryp3, that rely on alternative 
sensing methods and technologies.

Historically, weather and climate predictions has been carried out by the national weather agencies. These 
agencies use weather models together with the data from their observation networks to provide weather fore-
casts for public use on time scales ranging from daily, yearly to decadal. Despite the considerable advance-
ments in modelling and computing systems, the weather forecasts from agencies can only attain spatial res-
olution of 1-10km. Due to the cost and computational systems needed to run such models, there has been a 
growing interest in combining big data and machine learning to aid in localizing the predictions performed by 
these models.

In the current study, we investigate the implications of combining observations from Array of Things (Catlett 
et al., 2017) network installed in City of Chicago with the model outputs from Conformal Cubic Atmosphere 
Model (CCAM). To that end, the study utilizes modelled and observed air temperature over a one month 
period. The preliminary results showed a good correlation between the modelled and observed air temperature. 
However, the sensors mounted on AOT node use different sensing techniques to measure air temperature. Due 
to these differences, a considerable spread exists in the air temperature observed by the different sensors 
mounted on a single AOT node. This observed spread in the air temperature underlines the need of caution 
when using data from IOT devices. Further evaluation against the data from a co-located meteorological sensor 
may elucidate the implications of this spread when data from IOT devices is combined with the models.
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1https://www.tulipnetwork.org
2https://arrayofthings.github.io/
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1 INTRODUCTION

In last two decades, the skill of operational forecasts from NWP models have improved considerably owing to
the widespread use of ensembles of deterministic forecasts and DA. The improvements int forecast skill has
also been due to improvements in model physics, increased grid resolution and adoption of coupled models
e.g., coupling atmosphere model with a land surface model and/or ocean model, thus allowing for better
representation of small scale processes. However, the contribution of improvements in model physics have
been lower compared to the improvements due to higher grid resolution and DA. For a detailed review on
the progress in regional climate modelling, interested readers are referred to Wang et al. (2004). Moreover,
the operational weather forecasts currently produced by majority of national weather services are still limited
to a horizontal resolution of 1-10km, but there are on-going efforts at various institutions like Bureau of
Meteorology (BOM) in Australia and UK MetOffice (UKMO) in United Kingdom to increase the spatial
resolution to 200-500m over major cities. Although, spatial resolution of models that are currently operational
is appropriate for producing forecasts at national and regional scale, they have limited skill in modelling
localized microscale flow prevalent in urban areas. An illustration of various scales related to mesoscale-
microscale is shown in Figure 1. The limitations of NWP models in resolving microscale flow have led to
the development of integrated modelling systems such as Chen et al. (2011), where an urban canopy model is
embedded within a NWP model. However, such models are computationally expensive to run and, have only
been limited to research applications.

Figure 1. An illustration of urban boundary layer processes, from mesoscale to microscale. Source: Pullen
et al. (2008)

Furthermore, the amount of observations and the diversity in sources of observations for use in NWP has grown
considerably due to the improvements in connectivity. In addition to the conventional sources of observations
e.g., weather station networks, satellites, buoys and weather radars, data is also being collected from un-
conventional sources e.g., private weather stations (PWS;Wundergroud (2019)) and mobile devices (Netatmo
SAS, 2019). Unlike these un-conventional sources, the conventional methods of observations have to adhere
to the standards and methods laid out by the World Meteorological Organization (WMO, 2014), thus limiting
where and how many of such systems can be installed. Additionally, over the last few years, sensor networks
like Tulip and Array of Things (AOT; Catlett et al. (2017)) have been developed. In contrast to PWS and
mobile phones, these sensor networks use low cost sensors for increasing the density of devices measuring
environment conditions. The installation of such networks are either led by or carried out in collaboration
with the city councils or administrations, where the local government agencies are interested in improving
the liveability of the cities. For the sake of brevity, hereafter, data from the non-conventional sources of
observations will be referred to as ’crowd-sourced’ data. The unprecedented growth in ’crowd-sourced’ data
have also generated interest from the national weather agencies as evidenced by Hintz et al. (2019). A number
of preliminary studies like Madaus and Mass (2017); Hintz et al. (2019) have used the barometric pressure
data from the mobile phones and this was assimilated in NWP models. These studies have demonstrated the
potential of ’crowd-sourced’ data in increasing model skill, however, they have also pointed out the various
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steps needed for screening and quality control. In light of the foregoing discussion, we aim to investigate the
implications of combining meteorological observations collected from the AOT network installed within the
City of Chicago with the forecast generated by the CCAM model. To this end, we will examine the potential
of AOT network for correcting bias in modelled temperature field within an urban location.

Figure 2. Architecture of Array of things sensor node. Source: http://wa8.gl/architecture/
architecture/

2 DATA AND METHODS

2.1 Modelling System

The CCAM model (McGregor, 2005; McGregor and Dix, 2008) is developed primarily for the purpose of
atmospheric modelling with the capability of modelling climate at global scale and for downscaling cli-
mate over a regional domain. The CCAM model employs conformal cubic grid and uses Schmidt trans-
formation (Schmidt, 1977) for increasing horizontal resolution over a specified regional domain for down-
scaling. Grid stretching used in CCAM avoids the need for lateral boundary conditions needed by the
majority of the other regional climate models e.g., Advanced Research Weather and Forecasting model
(WRF-ARW; Skamarock et al. (2008)) and Consortium for small scale modelling (COSMO; see online at
http://www.cosmo-model.org/).

In the present study, long-wave and short-wave radiation are parametrized using Schwarzkopf and Ramaswamy
(1999); Freidenreich and Ramaswamy (1999), and cloud microphysics was modelled using the scheme de-
scribed in Rotstayn (1997) and Lin et al. (1983). The planetary boundary layer was modelling using a stability-
dependent boundary layer scheme based on the Monin-Obukhov similarity theory (McGregor, 1993) with the
non-local treatment following Holtslag and Boville (1993). The cumulus convection scheme was based on the
mass flux closure described in McGregor (2005). It includes downdrafts, entrainment and detrainment. For
the land surface scheme, a simple canopy scheme described in Kowalczyk et al. (1994) was used. This simple
canopy scheme uses six layers for soil temperature and moisture respectively and three layers for snow. The
soil moisture is obtained by solving Richard’s equation. Lastly, the scale selective digital filter (Thatcher and
McGregor, 2009) was used to force the temperature, sea level pressure and large scale winds from the ’parent’
model (i.e., reanalysis/ CCAM) onto each subsequent ’child’ model.

The model setup uses three domains in one-way nesting mode, where the domains are centered at 87.68◦ West,
41.84◦ North. The first two model domains (i.e., d01, d02) use C144 grid, whereas the third domain (d03)
uses C192, resulting in 144×144 and 192×192 grid cells on each panel respectively. The coarsest domain
d01 has a horizontal resolution of 60km, the nested domain d02 has a horizontal resolution of 10km, and the
subsequently nested highest resolution domain d03 has a spatial resolution of 2km. It is worth highlighting
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that the larger jumps in resolution (from d01-d03) are possible because of the stretched global grid used in
CCAM. Furthermore, the aforementioned spatial resolution are only applicable within the output region (i.e.,
the stretched part of the model grid), whereas, the model uses a lower resolution grid outside the output region.
The model simulations were initialized with the ECMWF (European Center for Medium Weather Forecast)
Intermediate reanalysis (ERA-Interim) (Simmons et al., 2007). Herein, the ERA-Interim has a horizontal
resolution of 0.75◦×0.75◦ (≈80km). The start date for the model simulation was 1 January, 2019 at 00 UTC
and the model simulation was carried out for 30 days.

Figure 3. Illustration of CCAM model grid and the AOT sensor network within the Greater Chicago Area.

2.2 Observations

Over the last five years, the University of Chicago and the Argonne National Laboratory in collaboration with
the City of Chicago has installed a network of more than 100 Array of things (AOT; Catlett et al. (2017)) nodes
within the Greater Chicago Area. The main purpose of these nodes is to collect a variety of real-time data on
urban environment, infrastructure.

The AOT nodes are equipped with sensors for measuring meteorological variables like air temperature, baro-
metric pressure, humidity, air quality variables like concentration of carbon monoxide, nitrogen dioxide,
sulphur dioxide and light intensity among others. For this study, we will restrict ourselves to the data col-
lected from the sensors deployed for collecting observations on meteorological variables. An exhaustive list
of data collected and the sensors used for collecting the data can be found at https://arrayofthings.
github.io/node.html and https://github.com/waggle-sensor/sensors.

In addition to the sensors for collecting data, the nodes also contain two on-board computers, where one
computer is used for node operations and the other one for edge computing. The former computer is used
for performing in-situ operations like packing data and transferring it to a server referred to as ”beehive”,
whereas the latter computer designated for edge computing comes with a graphical processing unit (GPU),
thus enabling the deployment of tools for performing operations related to image processing and machine
learning on the node itself before transferring processed data to the server. An illustration of the waggle
modular sensor node architecture is given in Figure 2.

2.3 Crowd-sourced data for bias correction

The climate and weather forecast generated by NWP models suffer from bias. Therefore, a number of meth-
ods for correcting forecast bias have been developed. The bias in model forecasts is alleviated by using the
observed data collected through conventional methods. However, due to lack of such observations within an
urban area, we will use the data collected through the AOT network in the City of Chicago to bias correct the
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(a) (b) 

 (c) 
 
 

Figure 4. (a) The CCAM model temperature on 5 January, 2019 at 05UTC, (b) a scatter plot of mean air
temperature from six temperature sensors mounted on the AOT node 10ba46 located at -87.63◦E, 41.88◦N
and, (c) a comparison of hourly observed and modelled air temperature at the location of node 10ba46. The
observed air temperature in (c) also shows the spread in air temperature observed by the 6 sensors used for
observing temperature.

air temperature output from CCAM model. The various methods range from simple additive bias correction,
quantile mapping (Piani et al., 2010) to kalman filter (Monache et al., 2008) based bias correction. Here, we
have described the two widely used bias correction methods.

Additive bias correction. Following Hawkins et al. (2013), the bias in raw model output xm(t) can be
corrected by simply shifting the mean of the model output xm by the mean of the observed data xo.

xcorrm (t) = xm(t)− (xo − xm) (1)

In addition, it is also possible to not only shift the mean as per eq. (1), but also the temporal variability using
eq. (2).

xcorrm (t) = xo +
σo
σm

(xm(t)− xm) (2)

Here, the bias correction method uses the standard deviation of model output σm and the observations σo in
addition to the mean values.

Quantile Mapping. In addition to the simple additive bias correction methods, removal of bias in model
output can be done using quantile-quantile mapping (Piani et al., 2010). In quantile mapping, it is possible to
account for bias in all statistical moments.

xcorrm = F−1
o (Fm(xm)) (3)

In this method, the quantile mapping is carried out as per eq. (3), where the cumulative distribution function
(CDF) of the observations Fo and model output Fm are used. For CDF, it is possible to either use an empirical
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cumulative distribution function, or the CDF of a fitted continuous distribution, with the assumption that both
the model output and observations follow a continuous distribution e.g., normal distribution.

Figure 5. A comparison of empirical cumulative distribution function (CDF) obtained from observed and
modelled air temperature. The CDF of modelled air temperature after bias correction (BC) using the two
additive BC methods and quantile-quantile mapping BC is also shown.

3 RESULTS AND DISCUSSION

The model grid points from the domain d03 and the locations of AOT nodes within the Greater Chicago area
are shown in Figure 2. It is evident that the network of AOT nodes has increased the density of observations
collected. Figure 4 shows the spatial variation of air temperature from CCAM model within the Greater
Chicago area on 5 January, 2019 at 05UTC. Additionally, a comparison of air temperature from 6 different
sensors mounted on an AOT node located at -87.63◦E, 41.88◦N is also shown (see Figure 4(c). It can be noted
that the model output compares quite well with observed air temperature. However, it must be pointed out
the air temperature observed by different sensors deployed on AOT node vary considerably (see Figure 4(c)).
A comparison of the empirical cumulative distribution of observed, raw modelled air temperature and bias
corrected modelled air temperature is shown in Figure 5. From the preliminary results presented here, it is
evident that observations collected through AOT nodes can be used for NWP modelling, however, the spread of
temperature measured by the various sensors mounted on each node does raise questions on both the reliability
and fidelity of such observation networks. It must also be kept in mind that the preliminary results presented
here compare observations from a single node and for a single variable. To derive any robust conclusions, the
procedure presented here will be expanded onto other nodes, both to evaluate the spatial pattern of observed
temperature and bias in model outputs.
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