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Abstract:    Solar panels on residential dwellings are typically installed facing the equator to maximise the 
energy collected. But the power generated by an equator-facing panel peaks at around midday, whereas 
residential loads typically have peaks in the morning and afternoon. By orienting panels in different 
directions it is possible to minimise the shortfall between load and generation. This benefits the end-user 
by decreasing the amount of electricity required to be imported, and the stability of the grid by decreasing 
the amount of variability between peak and low loads. We present a linear program for calculating the 
optimal panel orientations for a community of 29 individual dwellings, and for an apartment building with 42 
apartments in Australia. In both cases, panels should initially be placed facing north-west to meet the 
afternoon loads. If more panel area is available, the optimal configuration has fewer panels facing north-
west and more facing north-east and west.

This information has been used by a developer to design a renewable energy system for a retirement village.

Keywords:   Solar energy, aggregating demand, embedded network, optimisation

23rd International Congress on Modelling and Simulation, Canberra, ACT, Australia, 1 to 6 December 2019 
mssanz.org.au/modsim2019

856



K. Rowe and P. Pudney, Orienting solar panels to minimise power shortfall

1 INTRODUCTION

Over the last few decades the use of residential renewable generation sources has increased significantly in
Australia, as it has globally (Australian PV Institute, 2017; IEA, 2016). This increase has been in response
to factors including concern over the impacts of climate change, government rebates for renewable energy,
falling prices for renewable energy technologies, and increasing energy prices. These changes, along with
new technologies for customer metering, have led to the development of new models of electricity supply
and pricing. For example, Green and Newman (2017) and Hicks and Ison (2011) discuss how citizen and
community based power systems in an integrated grid are emerging in practice, Lehr (2013) focus on new
regulatory models that can enable new utility business models, and Steriotis et al. (2018) highlight that smart
grids and high penetrations of renewable energy necessitate the development of modern pricing schemes.

The changes also include embedded networks, which are increasingly being scrutinized for their current and
potential incorporation into national or state electricity grids, and stand alone microgrids. Precincts with a
single geographical location can aggregate individual household or apartment loads and act as one user. Such
communities generally have three options in setting up their energy supply: operating as stand-alone systems
(off-grid), whereby they supply, store and use their own locally generated electricity; staying connected to the
grid and using 100% grid sourced electricity; or staying connected to the grid and using their own supply of
locally generated electricity where possible and purchasing remaining requirements from the grid. In Australia,
as with other countries with high radiance levels, residential renewable power generation is usually from solar
panels. These precincts may contain photovoltaic (PV) systems with or without storage.

Here we look at how to increase the use of locally produced renewable energy by optimally matching residents
electricity use with solar energy through panel placement only in an embedded network. The importance
of self-consumption of rooftop photovoltaic generation has been increasingly recognised over the last few
years. A good review of these studies can be found in Luthander et al. (2015) and Freitas and Brito (2019).
Power generated by solar panels at any instant will generally not match the household load at that instant,
even if the total annual energy generated matches the total annual energy load. Simultaneously matching on-
site renewable energy generation with residential load by increasing the solar panel area and optimising the
orientation of solar panels can decrease the amount of electricity required to be imported from the grid.

Other options to improve self-consumption are the inclusion of battery or other storage mechanisms, and
demand side management (eg. load-shifting) (Luthander et al., 2015). Storage may be added to the PV system,
but generally at high cost (Grantham et al., 2017). Currently, solar panels are relatively cheap and payback
periods are short. For these reasons, matching local on-site renewable energy with household energy use
without storage is considered useful, particularly in this uncertain era of transition from traditional centralised
power stations to distributed energy sources.

A typical residential community load profile has a peak in the morning and a larger peak in the late after-
noon/evening. Traditionally, PV panels are mounted facing the equator as this creates more energy per square
metre of PV panels. However this orientation does not necessarily maximise the community self-use of the
energy prior to the excess being exported to the wider grid. From the perspective of the wider grid, to which
the local PV generation sources are connected, the onset of large amounts of residential solar being exported
causes grid stabilisation issues due to the high variability between import and export peaks (Obi and Bass,
2016), which are exacerbated when many users in one area all produce high PV generation and import from
the grid at the same time, also known as ‘ramping’ or the ‘duck curve’ (Denholm et al., 2015).

From the perspective of governing bodies, self-consumption helps reduce the peak import as electricity use
increases with a rising population, which means less grid augmentation is required. This should also reduce
electricity prices for the end-user. From the perspective of the end-user (the prosumer), while government
subsidies (such as Feed in Tariffs) which were implemented to encourage the uptake of rooftop solar are now
decreasing or disappearing altogether, the cost effectiveness of installing rooftop PV becomes more related
to self-consumption, which avoids more expensive import costs. Once installed, the electricity generated and
used by the prosumer has no cost.

Importantly, of course, given much power in the wider grid is still sourced from non-renewable energy, de-
creasing the amount imported from the grid during times of low renewable energy production will typically
decrease the amount of non-renewable energy used. Using locally generated renewable energy also decreases
transmission losses and therefore decreases CO2 emissions with every kilowatt used.

Tariff structures are based on government regulations and market forces and may change rapidly and radically.
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Maximising self-consumption will, in general, limit exports during periods when overall demand on the grid
is low and prices paid for exports are low, and minimise the energy required when demand is high and import
prices are high.

This paper presents data, methodology and outputs of a model which minimises the shortfall between commu-
nity load and PV generation by optimising the panel orientations. While it is apparent that facing some panels
more eastward and westward will match the higher energy-use in households which often occurs during the
morning and afternoon periods, due to the historical difficulty in obtaining detailed load use data, optimal panel
placement has rarely been accurately designed, and designs using eastward and westward facing panels has not
yet been confidently taken up by the industry. Awad and Gül (2018) show that at high latitudes in the northern
hemisphere, a south west facing solar PV system can significantly improve the residential self-consumption
compared to facing the panels towards the equator. Widén et al. (2009) also showed that using high latitude
data, an east-west orientation of PV arrays was best for maximising self-consumption, albeit the effect of the
optimisation was small. Our analysis uses detailed load data and matching detailed irradiance data and shows
that optimal panel placement for self-consumption is never towards the equator.

The importance of using detailed data has been highlighted by Luthander et al. (2015) who summarise that
sub-hourly data are needed to obtain a sufficiently accurate result. Times of extreme weather events (with high
or low irradiance) will often cause correlating changes in energy use. Temporal and spatial matching of load
and PV generation at high resolution will therefore provide a much more accurate idea of the amount being
exported or imported in reality. This impacts upon; the wider grid in identification of the maximum peak
import or export, policy which may be based upon the size of imports and exports, and the end-user if import
prices are different to export prices. Here we have used matching 30 minute aggregated data.

In Section 2.2 we formulate the problem of calculating the best panel orientations as a linear program. Sec-
tion 3 gives the results for various total panel areas.

2 METHOD

2.1 Load and solar generation data

We have used two sets of household load data for our analysis:

• half-hour load data from 29 separate dwellings at Lochiel Park in South Australia
• hourly load data from an apartment building in Bowden, South Australia, with 42 apartments.

Lochiel Park is a residential development designed by the South Australian government to be a ‘model green
village’. Each house was designed with a minimum 7.5-star NatHERS rating. The electricity use of each
house is recorded every minute. We used aggregated half-hour data from 2015.

Bowden is an inner northern suburb of the city of Adelaide, in South Australia. In 2018, the South Australian
government began work in Bowden to create the state’s first higher density urban infill project, which includes
a number of apartment blocks. All buildings meet 5 star Green Star As Built standards, which is a sustainability
rating system launched in 2003 (Green Building Council Australia, 2019). We used hourly energy use data of
the 42 apartments from 2016–2017.

Neither the Lochiel Park nor the Bowden dwellings are organised as embedded networks, but we have aggre-
gated the load data as if they are.

One-minute solar radiation data for the load years was downloaded from the Australian Bureau of Meteorol-
ogy (Australian Bureau of Meteorology, 2018). The timestamp of the radiation data was matched with the
equivalent time and date of the residential load data, allowing an exact match between the time of residential
energy use and PV output, on average, every half hour or hour. Solar panel output for various times and panel
orientations was obtained from the solar radiation data using the ‘SolaR’ package (Perpiñán, 2012). We as-
sumed 20% panel efficiency, and 25% losses due to dirt, temperature, power conversion and manufacturing
tolerances. We assumed a standard roof pitch of 25 degrees, and considered panels facing east, north-east,
north, north-west and west.

2.2 Mathematical formulation

The aim is to meet as much of the instantaneous load as possible using power generated from photovolatic
panels.
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The load at time t is L(t). Photovoltaic panels can have one of five different orientations: east, north-east,
north, north-west and west. Panels facing east generate pe(t) watts per square metre at time t. The power from
panels facing the other directions are pne, pn, pnw and pw.

The problem is to determine how much area of photovolatic panels to have facing in each direction so that as
much load as possible is met by the generated power. The total generated power at time t is

p(t; a) = aepe(t) + anepne(t) + anpn(t) + anwpnw(t) + awpw(t) (1)

where a = (ae, ane, an, anw, aw) and ae ≥ 0, . . . , aw ≥ 0 represent the installed areas facing each of the five
directions. The shortfall at time t is

s(t; a) = max {0, L(t)− p(t; a)} . (2)

If the load exceeds the generated power at some instant then the shortfall is the difference between the load
and the generated power; if the generated power exceeds the load then there is no shortfall.

The total shortfall over some time interval [0, T ] will be

S(a) =

∫ T

t=0

s(t; a)dt. (3)

If loads and powers are calculated at discrete times ti then the total shortfall is

S(a) =
∑
i

s(ti; a). (4)

We wish to minimise the total shortfall S, but in general we will have a limit A on the total area of panels
available. The problem is

minimise S(a) (5)

subject to the constraint

ae + ane + an + anw + aw ≤ A. (6)

There may also be limits on the areas available for panels in each direction:

ae ≤ Ae, ane ≤ Ane, an ≤ An, anw ≤ Anw, aw ≤ Aw. (7)

This problem cannot be solved using standard Linear Programming (LP) solvers because the objective function
is nonlinear due to equation (3) being nonlinear. The problem can be linearised by replacing equation (2) with
pairs of constraints

s(t; a) ≥ L(t)− p(t; a) (8)
s(t; a) ≥ 0. (9)

The fact that we are minimising the total shortfall S will guarantee that the solution will have s(t; a) =
L(t)− p(t; a) for all times t where L(t) ≥ p(t; a). This formulation introduces an extra pair of constraints for
each time, but can still be solved using standard LP solvers even with half-hourly times for a year. The final
LP formulation is

minimise
∑
i

si (10)

subject to

si ≥ 0 (11)
aepei + anepnei + anpni + anwpnwi + awpwi + si ≥ Li (12)

ae + ane + an + anw + aw ≤ A (13)
ae ≤ Ae (14)
ane ≤ Ane (15)
an ≤ An (16)

anw ≤ Anw (17)
aw ≤ Aw (18)
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Figure 1. Shortfall reduces as total panel area increases.

with variables ae, ane, an, anw, aw and si to be determined.

The linear programs were implemented and solved using R.

3 RESULTS OF OPTIMISING PANEL ORIENTATIONS

3.1 Separate dwellings

The linear program to solve the problem for the separate dwellings at Lochiel Park has 5 panel orientations
and a shortfall every half hour for a year, giving a total of 17 523 decision variables. The optimal configuration
was calculated for various total panel areas ranging from 200 m2 (typically four panels per dwelling) up to an
unrealistic 10 000 m2.

As the total area of PV to be used in the model increases, the configuration of panels which minimises the
shortfall changes. This optimisation model does not constrain the area allowed in any direction. Table 1 shows
the orientation of panels that minimises the shortfall for a given total area of PV.

For the 29 separate dwellings at Lochiel Park, typical roof area available in the precinct for PV panels may be
between 400 m2 (roughly eight panels per dwelling) and 1000 m2 (roughly 21 panels per dwelling). Table 1
shows that the initial panel placement to minimise shortfall is north-west. However, as the area of PV increases
beyond 300 m2, panels are removed from this orientation and placed initially west and north-east. Orientations
for realistic roof areas are generally north-east, north-west and west, and never north or east.

Figure 1 shows how the shortfall reduces as the total solar panel area increases. The shortfall cannot reduce
below 87 MWh, which is the energy used during the night. With 1000 m2 of panels, the reduction in shortfall
is about 73% of the theoretical maximum reduction.

Table 1. PV area (m2) at each orientation when using from 200 to 10 000 m2 of total PV area to minimize the
shortfall using Lochiel Park data.

Max Panel Area PV Area PV Area PV Area PV Area PV Shortfall
Area (m2) East North-east North North-west West (kWh)

200 0 0 0 200 0 127 847
300 0 4 0 296 0 117 880
400 0 85 0 176 139 111 795
500 0 153 0 88 259 107 585
700 0 235 0 0 465 102 439

1000 0 326 0 0 674 98 426
2000 644 0 0 0 1356 93 508

10 000 7751 0 0 0 2249 88 790
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Table 2. Shortfalls (kWh) for 500, 700 and 900 m2 of PV panels using optimised panel placement (the first
line in each section) followed by various constrained panel placements.

Max Panel Area PV Area PV Area PV Area PV Area PV Shortfall
Area (m2) East North-east North North-west West (kWh)

500 0 153 0 89 259 107 585
500 250 0 0 0 250 108 585
500 0 0 0 0 500 109 528
500 0 500 0 0 0 116 277
700 0 235 0 0 465 102 439
700 0 0 0 0 700 104 284
700 350 0 0 0 350 102 980
900 0 301 0 0 599 99 462
900 0 300 300 300 0 101 233
900 0 0 900 0 0 103 181

Table 3. Optimal panel orientations for given areas between 200 to 20 000 m2 of PV panels, to minimize the
shortfall between load and generation in apartments using 2016–17 energy data. The shortfall is for two years.

Max Panel Area PV Area PV Area PV Area PV Area PV Shortfall
Area (m2) East North-east North North-west West (kWh)

200 0 0 0 200 0 103 322
400 0 1 0 261 138 97 562
500 0 23 0 289 188 96 236
700 0 51 0 0 649 94 551

1000 0 148 0 0 852 93 124
2000 849 0 0 0 1151 91 100

10000 1177 0 0 0 1054 90 849
20000 1177 0 0 0 1054 90 849

The model tells us the optimum area of PV panels to place in each direction, but is the difference in shortfall
significant if the panels are placed sub-optimally? This may be useful information for precinct developers
as they often need to take into consideration other unrelated factors which influence rooftop angles. For
a typical precinct of around 20 to 30 dwellings, the available rooftop space for PV arrays may be around
500 m2 to 900 m2. Table 2 presents the shortfall for sub-optimally placed panels, compared to optimised panel
placement. The increase in shortfall is small. For example, for 500 m2 of panels, the increase in shortfall when
restricting the panels to the north-east and west is 490 kWh per year (including all 29 houses), which is an
increase of only 0.1%. If panel orientation is restricted to 250 m2 panels east and 250 m2 west, the additional
shortfall is 1%. Putting all panels west results in a 2% increase in shortfall, whereas placing them all north-east
results in an 8% increase in shortfall.

3.2 Apartments

The optimisation process outlined in Section 2.2 was also run using the Bowden energy data with 2016–17
irradiance data to find the optimal panel placements that minimise the shortfall. This linear program has 17 008
decision variables (5 panel orientations, and a shortfall every hour for two years, with a few missing hours).
The results are presented in Table 3, and show, similarly to the Lochiel Park data, that optimal panel placement
is initially north-west, and then north-east and west as the permissible area for PV increases. The amount of
energy used at night is 91 MWh.

Notice also that the 42 apartments use less energy that the 29 individual dwellings. The average annual load
for an apartment is 1770 kWh, whereas the average annual load for a Lochiel Park dwelling is 6030 kWh.
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4 CONCLUSIONS

The models developed in this paper use real and detailed residential electricity loads, and matching solar
irradiation data, to reveal insights into best panel placement to optimise the use of renewable energy in both
separate residential dwellings and apartments.

Household loads generally have morning and evening peaks, whereas solar power peaks during the middle of
the day. For both the individual dwellings and the apartments that we studied, panels oriented north-west gave
the greatest initial reduction in the shortfall between generation and load. As the total area of solar panels
available is increased, panels are removed from the north-west and added to the west and north-east. For
realistic total panel areas, panels were never oriented east or north.

The apartments use about a third of the energy of the separate dwellings, because of the smaller sizes, and the
benefits of extra insulation from being adjacent to one another.

The information on how to orient solar panels to minimise power shortfall is useful to groups developing
housing, and has been used to design a renewable energy system for a retirement village with 24 dwellings.
Future work will incorporate energy storage into the model.
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