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Abstract: Mapping the extent and severity of bushfires is an important part of post-fire damage assessment 
and contributes to the fire history of a region. This information in turn is used in estimating the gradual increase 
in fuel load after the fire and hence is a key variable in anticipating future fire risk. Spectral indices, i.e., linear 
combinations of multi-spectral bands in remote sensing imagery, are conventionally used to determine burn 
extent and severity by comparing differences in imagery obtained pre- and post-fire events. For example, the 
Normalised Burn Ratio (NBR) exploits differences in the relative spectral response in shortwave and near-
infrared wavebands to identify areas of burnt vegetation in satellite imagery. Well-known limitations of this 
differencing approach include its limited consistency and applicability over large areas, the requirement of a 
priori knowledge of where and when a fire occurred, and the need for imagery acquired within a reasonable 
time before and after the burn so that seasonal changes and recovery effects are minimal.  

To address these challenges, we developed a combined burn extent and severity mapping approach that uses 
the full spectral information in time series of Landsat satellite observations available through the Digital Earth 
Australia archive. The method is primarily designed for perennial vegetation that does not burn frequently. The 
principle is to identify spectral anomalies in space and time, i.e., spectra that stand out significantly from the 
time series. The method quantifies the average spectral response of a pixel using the robust geometric median, 
which is relatively insensitive to residual atmospheric effects. Deviation of the spectral response from the 
geometric median is quantified through the cosine distance, a measure based on spectral similarity. Pixels with 
a distance greater than the equivalent of three standard deviations from the mean (i.e., statistical outliers) are 
identified as having changed. Subsequently, absolute and relative NBR and cosine distance changes are 
calculated to identify burns from other possible landcover changes. A subsequent region-growing step 
improves the classification by contracting pixels with below-threshold evidence of burning. In an optional post-
processing step, corroborating data such as fire detections from thermal remote sensing (e.g., Geoscience 
Australia’s Sentinel Hotspots fire detection system) and other ancillary data can be used to improve 
classification further.  

We evaluated the method for several case studies in southern Australia through a comparison with 
independently derived burn extent maps provided by government agencies. The results show that the fully-
automated algorithm developed produces classification results that are commensurate with conventional 
supervised image classification methods, but with the benefit of being repeatable and fully automated. 
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1. INTRODUCTION 

Mapping the spatial extent and severity of a bushfire event is a common aspect of post-fire damage assessment. 
It also helps to extend the so-called fire history for an area, which is key information in assessing future fire 
risk, e.g. through predicting fuel load build-up since the fire. Spectral indices, i.e., linear combinations of multi-
spectral bands in remote sensing imagery, have long been used to highlight features of interest in the landscape 
and to monitor changes in these features through time. For example, the Normalised Burn Ratio (NBR) (Key 
and Benson, 1999) exploits differences in the relative spectral response in shortwave and near-infrared 
wavebands to identify areas of burnt vegetation in satellite imagery. The NBR is often used along with 
vegetation indices (e.g., NDVI) in imagery acquired pre- and post-fire to map burn extent. However, a well-
known limitation of the use of spectral indices to map burn extent is their limited consistency and applicability 
over large areas. For example, contrasting soil types or land uses can have a similar index value to burnt 
vegetation, thus leading to misclassification.  Moreover, index-based approaches to burnt area mapping require 
a priori knowledge of where and when the fire occurred, and imagery acquired within a reasonable time before 
and after the burn so that the effects of seasonal vegetation change and post-fire recovery are minimal. These 
all pose challenges when using infrequent, higher-resolution imagery, such as that available from the Landsat 
series. Conventional remote sensing methods to map burn extent and severity are at least partially supervised 
and typically require at least some knowledge of the approximate locality and date of fire occurrence, followed 
by the visual selection of a sequence of imagery preceding and immediately following the event. Satellite data 
characteristics such as spatial resolution, areal extent, spectral and temporal coverage all play important roles 
in determining the accuracy with which a burn can be mapped by such an approach (Chuvieco et al., 2019). 
For example, some remote sensing systems offer a high resolving capability of ~ 1 m, but the data are collected 
infrequently (e.g., monthly), giving rise to the temporal sampling issues already mentioned. Conversely, 
MODIS provides more frequent imagery but at lower resolution. This is suitable for large-area burn mapping, 
and indeed MODIS is used to good effect in the North Australia and Rangelands Fire Information System 
(NAFI, http://www.firenorth.org.au/nafi3/), although the degree of operator supervision and output quality 
control and associated resources requirements are unknown to us. In any case, the 500-m resolution of MODIS 
imagery is often insufficient for the detail of mapping required in southern states. In those cases, burn mapping 
is only done where the occasion calls for it, using a variety of methods (e.g., airborne or on-ground visual 
surveys, or supervised imagery classification), with accuracy and detail that are extremely variable, and an 
overall result that is not reproducible. This also means that the resulting fire history is incomplete and of 
generally unknown accuracy. Overall, Landsat observations appear to provide a suitable balance between 
spatial resolution, spectral coverage and temporal sampling frequency for most burn area mapping applications 
(Goodwin and Collett, 2014; Chuvieco et al., 2019). 

Our objective was to develop a fully automated algorithm and workflow that could be used to provide a 
comprehensive and reproducible fire history by making use of the very large amount of Landsat-series imagery 
contained in Geoscience Australia’s Digital Earth Australia database. While the algorithm can be and was 
applied across the continent, the primary application was for the construction of an up to date fire history for 
forested environments in southern Australia. Requirements for the workflow to be developed were that it would 
be (1) scalable, so it could be implemented anywhere and everywhere in Australia without operator input; (2) 
sensor-agnostic, so that it could take advantage of the full Landsat series as well as more recent Sentinel-2 
observations; (3) freely available under an Apache 2 license (i.e. no restrictions on the use and modification of 
the code); and (4) documented in the form of self-documented code, case studies and user guidance. 

2. DATA AND METHODS 

2.1. Digital Earth Australia Landsat archive 

The data used by the workflow are derived from Geoscience Australia’s Digital Earth Australia (DEA) archive 
of Landsat imagery (Lewis et al., 2016). The DEA holdings span the Landsat series of thematic mapper (TM, 
including the enhanced ETM+) and operational land imager (OLI) imagery. The data was georeferenced, 
cloud-masked, atmospherically corrected and resampled to 25-m resolution tiles in Australian Albers 
projection by Geoscience Australia. The imagery is currently accessible through the National Computational 
Infrastructure using an instance of the Open Data Cube (https://www.opendatacube.org/); a Python-based 
library that provides a programmatic interface to the data and supports various data selection, manipulation 
and analysis operations. 
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2.2. Spectral anomaly detection  

Our approach to identifying burn events in time series of multispectral Landsat imagery is to examine 
deviations of the reflectance spectra from the typical or ‘normal’ spectrum for a given pixel.  When the 
deviation of a given spectrum is above a predefined distance (in spectral space) from the norm it is called a 
spectral anomaly, in the statistical sense of the word. The approach therefore requires the calculation of the 
normal spectrum and the choice of distance measure. While it has been applied in the following it may be used 
to identify any landcover change. We illustrate the approach with example spectra in Figure 1.  

Figure 1 shows the Landsat reflectance spectra for a vegetated area before and after a bush fire. Before the fire 
(blue curve) we see a spectrum that has the spectral shape typical of  vegetation, namely the blue (0.4 µ m) 
green (0.55 µ m) and red (0.65 µ m) bands delineating the green peak; the shape rise in reflectance along the 
red-edge to the near-infrared (NIR) plateau (0.8 µ m), and a drop in reflectance in the shortwave bands 1 (1.6 
µ m) and 2 (2.2 µ m). While the shape of the spectrum is consistent with that expected for a vegetated target, 
the values are somewhat higher than expected. In this case, the vegetated pixel was contaminated with light 
haze (thin cloud or smoke). After the fire (orange curve) the characteristic spectral response of vegetation has 
been replaced by a monotonically increasing reflectance curve that is typical of bare ground. Land clearing 
rather than burning produces a similar spectral response. A normal spectral curve for this location was 
calculated using the geometric median (Roberts et al., 2017). The geometric median (GM) is displayed as the 
grey curve in Fig. 1. This multivariate statistic is representative of the reflectance spectra for the typical state 
of the target, uninfluenced by potential cloud contamination, sensor artefacts, or infrequent cover disturbances. 
As with univariate statistics, the multivariate GM is less sensitive to outliers than the arithmetic mean. In this 
work, the GM, denoted xGM, served as the normal reflectance spectrum for our time series. 

The next step in our approach is to estimate 
deviation of the spectrum for each date in the 
time series from the GM. Standard distance 
metrics used in multivariate statistics for 
classification, or discriminant analysis, are the 
Euclidean or Mahalanobis distances (Campbell, 
1980). Both provide sum-of-squared differences 
between a multivariate variable and a reference 
(usually the multivariate mean). However, these 
measures do not consider the similarity between 
the variable and the reference. In our case, this 
means that the two very different looking spectra 
can have very similar Euclidean distances 
despite appearing very different. For example, 
the pre- and post-burn reflectance spectra in Fig. 
1 have Euclidean distances of 0.140 and 0.165 
from xGM, respectively. A consequence would be 
that the two spectra would be misclassified as 
unburnt vegetation. 

An alternative measure of distance is based on the cosine similarity of reflectance spectra (Roberts et al., 2018). 
The similarity is expressed by the angle, 𝜃𝜃, between two vectors in multi-dimensional space. For a sample 
spectrum, xs, and the GM, xGM, it is calculated as  

cos(𝜃𝜃) = x𝑠𝑠 ⋅ x𝐺𝐺𝐺𝐺

‖x𝑠𝑠‖2 �x𝐺𝐺𝐺𝐺�2 
,                                                                                (1) 

where ||.||2 is L2-norm, or the square root of the sum of square elements of x, and the cosine distance between 
xs and xGM is defined by 

𝑑𝑑cos(x𝑠𝑠, x𝐺𝐺𝐺𝐺) = 1 − cos(𝜃𝜃)                                                                          (2) 

A cosine distance of 0 indicates perfect similarity (i.e., identity) between two spectra, while anything else 
indicates a dissimilarity of some degree. In the case of the spectra in Fig. 1, cosine distance values between 
pre- and post-fire spectra from the GM are 𝑑𝑑cos = 0.005 and 0.241, respectively.  

 
Figure 1. Landsat reflectance spectra for vegetation for a date 

before (blue) and shortly after (orange) a burn event, along 
with the Geometric Median (grey) of the spectra whole time 

series.  
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The GM and cosine distance calculation are applied per pixel using a multi-year time series for a defined 
geographic extent extracted from the Data Cube. For each pixel, a data matrix, X, is constructed from Ns cloud-
free p-dimensional multispectral observations xs, where in our case, p = 5 corresponding to the 5 solar reflective 
Landsat TM bands. We calculate the GM, xGM for the time series and the cosine distance using Eq. (2) for each 
date tk, k = 1, …, Ns.  From the time series of 𝑑𝑑cos(𝑡𝑡𝑘𝑘) we calculate the 75th percentile (Q3) and interquartile 
range (IQR) of values to define the critical distance threshold,  𝑑𝑑0 = 𝑄𝑄3 + 1.5 IQR. 

A spectral anomaly is identified for any date tk in the time series where 𝑑𝑑cos(𝑡𝑡𝑘𝑘) > 𝑑𝑑0. A cosine distance above 
the critical threshold represents a statistically significant deviation from xGM. However, due to an occasionally 
high likelihood of cloud contamination (despite preliminary screening), we include the additional condition 
that a spectrum xs(tk) is an anomaly if and only if its nearest neighbours xs(tk-1) and xs(tk+1) are also identified 
as anomalies in the time series. An example time series of cosine distances for a pixel is shown in Figure 2. 

An anomalous period is 
defined by a temporally 
persistent statistically 
significant deviation of 
the spectra from the GM. 
Such a period is 
highlighted in Fig. 2. The 
start and end times, tstart 
and tend, define the 
duration of the anomalous 
period as, duration = 
𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. This 
represents the passage of 

time from when the disturbance (in our case fire) was first detected, to the time when the affected area appears 
to have recovered, and the spectral response of the land cover has returned to typical conditions and no longer 
is considered a statistical outlier. A related measure is what is defined here as burn severity as,  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ∫ 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) − 𝑑𝑑0 𝑑𝑑𝑑𝑑𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒
𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

,                                                                                         (3) 

which we use as a measure of the degree of disturbance.  

Using only cosine distances would often identify seasonal variation in grassland areas. An effective filter to 
eliminate these patterns in the cosine distance maps was the introduction of the NBR indices. The Euclidean 
distance in NBR space (𝑑𝑑nbr) between the NBR time series and the median NBR (𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐺𝐺) calculated from the 
geometric median was calculated as, 

𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 = �∑ (𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 − 𝑁𝑁𝑁𝑁𝑁𝑁𝐺𝐺𝐺𝐺)2𝑁𝑁
𝑘𝑘=1                                                                                                 (4) 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡 is the NBR indices calculated in date tk. The threshold of the outliers is determined as the same 
way as cosine distance using Q3 and IQR of 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛  values. Thus, the anomalies in the time series are identified 
as points above the critical distance threshold for both cosine distance and NBR distance. The final estimate of 
severity is calculated from the overlap in anomalous periods from both Eq (3) and Eq (4). 

2.3. Data augmentation with ancillary data and analysis 

The spectral anomaly detection step above will identify any land cover disturbance that results in a statistically 
significant change in the spectral reflectance response of land cover beyond the typical state characterised by 
the geometric median spectrum, xGM. To determine whether the change in spectral response is likely to be fire-
related, we include a step to test for consistency with the expected change in the NBR. Erroneous small-scale 
mapping errors can occur in the results, e.g., as a consequence of remaining cloud edge shadows. Conversely, 
burn extent may visually extend beyond the area classified as ‘severely’ burned (i.e., statistical outliers beyond 
d0 threshold). Region-growing, i.e. expanding the burn area extent by lowering the threshold, 0.67 d0 produced 
good results, augments the initial ‘severe’ burnt area mapping to produce ‘moderate’ burn extent. These 
‘moderately’ burnt pixels will include further areas that do not qualify as outliers but do show a substantial 
decrease in NBR and are adjoining pixels detected as burns. In an optional post-processing step, corroborating 
data such as fire detections from GA’s thermal remote sensing fire detecting system Sentinel Hotspots 
(Geoscience Australia, 2014) or from agency incident report archives can be used to improve classification and 
attribution further. 

 
Figure 2. Time series of cosine distance calculated from Landsat reflectance spectra 

and the geometric median, xGM, for a single pixel. Anomalies in the time series 
identified as points above the critical distance threshold d0. 
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2.4. Verification data 

To evaluate the performance of the spectral anomaly detection method, we compiled digitised maps of burn 
extent and sometimes severity from various sources. Generally, the mapping was done by state agencies 
involved in fire management and derived by the variety of means, including surveys and supervised image 
classification or manual digitisation. 

2.5. Workflow software and Outputs 

The entire workflow described in this paper was developed in Python. A ‘validation toolbox’ was also 
developed, containing a library of functions to import reference burn mapping data (e.g., as vector files) and to 
calculate statistics of agreement based on true and false positives and negatives. Worked examples of both 
mapping and validation were developed in Python notebooks, explaining and illustrating the code as well as 
the underlying theory. All code is available under a free and open Apache-2.0 license via 
https://github.com/GeoscienceAustralia/burn-mapping. 

All output variables are stored in a single, self-described NetCDF-formatted file. Variables include:  

• StartDate – the detected start-date of severe and moderate burns 
• Duration – the duration of surface change due to fire  
• Severity – the severity of surface change due to the bushfire  
• Severe – binary map of severely burnt pixels 
• Moderate – binary map of both the moderately and severely burnt pixels 
• Corroborate – binary map representing corroborating evidence (by default the location of fires 

detected by GA’s Sentinel Hotspots system using MODIS data only with a 4-km buffer) 
• Cleaned – starting month of detected burns after post-filtering using corroborate evidence  

3. RESULTS  

We applied the spectral anomaly detection method to a number of scenes in the Landsat archive guided by 
the verification data we had available at the time of our investigation. We show the mapped burn area extent 
through maps of severity (Eq. 4) and duration for select case studies in Section 3.1.  A comparison of mapped 
with verification data are presented in in Section 3.2. 

3.1. Burn area mapping  

The application of the spectral anomaly detection approach for burn area mapping is illustrated in Figure 3 for 
25 km x 25 km areas around the Sir Ivan fire, NSW. Using Landsat-8 OLI spectra from DEA we calculated 
the geometric median, xGM, for data in the period 2013-2016. This is displayed in Fig. 3a as a false colour 
composite (rgb=b5,4,2). The next step was to calculate the cosine distances, 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 (Eq. 2), for each of the dates 
in the extended time series 2013 – 2017. These are displayed in Fig. 3b for 1 date before the bushfire and 3 
dates after.   

The severity (Eq. 3), start date, duration and cleaned burn extent is displayed in the panels of Fig. 3c.  The 
severity suggests that much of the forested areas (dark green area to the north of the scene, Fig. 3a) was burned 
in the fire.  The Start Date plot shows that much of the scene, including the grassland areas was burnt in Feb 
2017. The duration (in days) suggests that much of the grassland areas recovered in ~month, while the forest 
areas were still affected > 1 year from the fire start date. To minimize the possible attribution of non-fire related 
change to the estimated burn extent, we applied a post-filtering procedure to the moderate burn extent based 
on corroborating evidence from GA Hotspots data. A one month buffer before the mapping year was used 
when extracting the Hotspots data to avoid missing burns at the end of previous year. 

3.2. Burn area evaluation 

Our evaluation of the method was based on comparisons between estimated burn area and those obtained from 
the compiled verification data (Section 2.3). Categorical statistics were derived from the method’s ability to 
identify burned area for forest and grassland across the case studies (Figure 4, Table 1). For most studies sites, 
burned forest areas were identified with more than 73% accuracy, and as high as 97% for Sir Ivan fires (Fig. 
4a). The exception, with 59% accuracy, was the Black Saturday fires of 2009 (Fig. 4f) where the method 
appears to have missed forested areas around Murrundindi, Vic. However, a visual inspection of pre- and post-
fire imagery did not indicate the area to have been affected, despite the verification data (likely from on-ground 
assessment) indicating that it had. The method was able to correctly identify grassland fires with a better than 
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67% success rate overall. Accuracy of the method’s mapping of grassland fires for the Walls of Jerusalem, Tas.  
(Fig. 4e) was 34%. However inspection of the verification data in this instance suggested far more area was 
burned than we could corroborate through manual visual assessment. In terms of false detection the method 
performed very well, with errors generally less than 1%.  The exception was the Walls of Jerusalem where the 
method indicated burnt forest area that was not indicated in the verification data.  

 

 

4. DISCUSSION AND CONCLUSION 

Our objective was to develop a fully automated algorithm and workflow that could be used to provide a 
comprehensive and reproducible fire history by making use of the very large amount of Landsat-series imagery 
contained in Geoscience Australia’s Digital Earth Australia database.  

Evaluation so far has demonstrated that our fully automated workflow produces burn extent and severity 
mapping results that agree with visual assessment of the imagery. Calculating formal classification 
performance statistics using the compiled fire extent mapping from various state agencies as a reference was 
hamstrung by data quality and inconsistent conceptual definitions used. Visual assessment indicated that the 
accuracy and spatial detail of available mapping were extremely variable, presumably reflecting the 
requirements for the intended use. Conceptual issues occurred in some cases where the mapping otherwise 
appeared of high quality. For example, commonly the reference mapping corresponded to the outer perimeter 

 
Figure 3. Example burn area mapping using spectral anomaly detection for Sir Ivan, NSW: (a) geometric median 

calculated for the period 2013-2016 and displayed as a false colour rgb; panel (b) shows the cosine distances calculated 
for dates before and after bushfire in Feb 2017; panel (c) shows the severity, start date duration and cleaned burn extent 

(as defined in Section 2.2) 

 
Figure 4. Categorical evaluation of the burned areas for case studies areas against verification data. 
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of the largest contiguous area burned, whereas our automated analysis can indicate unburnt areas within that 
perimeter, as well as unconnected fire areas outside it (e.g., as the result of spotting by ember attack). All of 
these caveats made the interpretation of formal classification statistics challenging. Nonetheless, visual 
interpretation indicates that typically, our mapping results were of a quality that is commensurate or better than 
that available from mapping agencies based on current operational methods. Furthermore, the workflow 
developed allows for the augmentation of the mapping by integrating corroborating evidence from, e.g., 
satellite-based fire detection systems and agency incident reports. 

The main advantage of the developed method over current operational mapping techniques is the opportunity 
for automated burn mapping over large areas. Code performance has been tested at national scale, and this 
demonstrated that routine (e.g., annual) national-scale mapping at 25-m resolution is entirely feasible. Such a 
national product should help produce a more comprehensive fire history for use in fire management but also 
for government and private industry to assess fire risk. For mapping of individual, high-impact fire events, at 
the very least, the workflow developed can be used as a starting point for further improvement and 
augmentation, potentially presenting considerable productivity gains.  
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