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Abstract: A simple and robust method for assimilating satellite soil moisture (SM) products into the 
Australian Water Resources Assessment (AWRA) model was developed and tested via the community 
modelling system, AWRA-CMS. The method requires time series of two satellite soil moisture products, along 
with AWRA simulations of upper-layer soil water storage for an offline determination of weights for use in 
the optimal merging of models and observations via the triple collocation (TC) technique. The candidate data 
sources were near real-time products from the Soil Moisture Active/Passive (SMAP), Soil Moisture and Ocean 
Salinity (SMOS), and Advanced Scatterometer on MetOp satellite (ASCAT) production systems.  

Evaluation of AWRA model performance with and without data assimilation (DA) was conducted for key 
variables including upper-layer soil water storage, root-zone soil water storage, evapotranspiration and 
streamflow against in-situ networks. The comparisons demonstrated conclusively that the assimilation of 
satellite SM considerably improved the accuracy and representation of AWRA model surface soil moisture 
across Australia. The temporal correlation was increased by 0.2 correlation units on average after the 
assimilation compared to open-loop across in-situ SM monitoring sites. Positive impacts were found on the 
simulation of streamflow over majority of catchments with an increase in correlation by up to 0.4.  The impact 
of SM assimilation on the other variables was not as significant, largely as a result of the indirect way SM 
assimilation imparts constraint on those variables. 

Finally, an investigation into the impact of SM data assimilation on forecast accuracy was conducted through 
driving AWRA model with forecast meteorological forcing 9 days into the future. Improved skill in estimating 
surface soil moisture of AWRA were found to persist up to 4 days, and likely longer. Results of this study 
demonstrated the benefit of constraining model outputs with satellite soil moisture observation on improving 
model simulation, as well as the importance of accurate initial hydrological states on improving forecast skill. 
Improved SM is vital for assessing and predicting water availability and assisting policy making.  
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1. INTRODUCTION 

Soil moisture, a key variable in modulating climate variability and extremes through land-atmosphere 
interactions, is critical to climate and weather prediction as well as climate-sensitive socioeconomic activities.  
Soil moisture estimates from water balance models are largely dependent on the uncertainties of atmospheric 
forcing, model physics, model parameterization and initialization. Remotely sensed data can provide spatially 
and temporally varying constraint on the modelling of biophysical landscape variables that is often superior to 
that achieved by single static set of model parameters. Data assimilation merges models and observations in a 
way that compensates for the deficiencies in each (e.g. uncertainty, coverage), resulting in improved accuracy, 
coverage, and ultimately forecasting capability. Over the past decades, the assimilation of satellite soil moisture 
products derived from either passive or active microwave sensor has been shown to improve model estimates 
of soil moisture significantly (Draper et al. 2012; Renzullo et al. 2014; Tian et al. 2017; Tian et al. 2019).   

Passive microwave sensor technology measures emissions emanating from the earth-atmosphere system in the 
microwave wavelengths of the electromagnetic spectrum. The dielectric constants of the various soil 
constituents (e.g. sand and clay) is known to respond dramatically to variations in soil water content which in 
turn influences the soil emissivity. The corresponding soil depth of microwave emission is related to the 
antecedent moisture status of the soil and sensing frequency (Jackson 1997), which for the typical passive 
microwave product is either top ~5 cm for L-band and ~2 cm for C-band frequencies. On the contrary, soil 
moisture products derived from active radar systems are based on the measurements of backscatter which is 
dependent on surface roughness and moisture condition (Choudhury et al. 1979). The soil wetness can be 
determined by examining its relative intensity between the weakest and strongest observed backscatter 
(Wagner et al. 1999). Most active systems are based on C-band microwave frequencies and as such their 
moisture estimates pertain to the upper ~2 cm of soil. 

In this study, we evaluated three satellite soil moisture products from both active and passive microwave 
sensors over Australia continent with three in-situ soil moisture monitoring networks. Two of the satellite soil 
moisture products with best performance were assimilated into the Australian Water Resources Assessment 
(AWRA) Community Modelling system using a simple sequential state updating method. Soil water storage, 
evapotranspiration and streamflow from AWRA after the assimilation were evaluated with in-situ 
measurements and compared against model open-loop (without assimilation) outputs. Forecast meteorological 
data from the Bureau's Numerical Weather Prediction system were used to force AWRA model estimates 9 
days into the future, with the upper layer soil water storage estimates from the assimilation as initial states, in 
order to assess the impact of data assimilation on forecasting skill.      

2. DATA AND METHOD 

2.1. Australian Water Resources Assessment Community Modelling system (AWRA-CMS) 

The Australian Water Resources Assessment (AWRA) Community Modelling system (AWRA-CMS) has 
nearly10-year history of developments, starting with the landscape hydrology model (AWRA-L) (Van Dijk 
2010), undergoing various revisions in the modelling structure (Hafeez et al. 2015; Vaze et al. 2013), to the 
operational version of today (Frost et al. 2018). The AWRA-CMS has been available since 2016 and the code 
accessible from github (https://github.com/awracms/awra_cms). The model runs at a daily time step with a 
5km spatial resolution. It is a one-dimensional distributed water balance model that simulates the flow of water 
through the landscape from partitioning rainfall into vegetation, soil moisture and groundwater stores and out 
of grid cell through evapotranspiration, runoff and drainage. Hydrological processes are simulated separately 
for deep rooted vegetation and shallow rooted vegetation. The soil water storage has been partitioned into three 
layers (upper: 0–10 cm, lower: 10–100 cm, and deep: 1–6 m). The shallow rooted vegetation only has access 
to the upper and lower soil stores, while the deep rooted vegetation has access to all layers. The surface water 
storage and groundwater are simulated at each grid cell and conceptualized as a small unimpaired catchment.    

2.2. Satellite near-surface soil moisture products 

In this study we explore the use of soil moisture products derived from both passive and active systems. For 
the passive source, we have the Soil Moisture Active-Passive (SMAP) product from NASA (Entekhabi et al. 
2010), and the product from the European Space Agency’s (ESA’s) Soil Moisture and Ocean Salinity (SMOS) 
mission (Kerr et al. 2001). Both SMAP and SMOS produce volumetric soil moisture estimates (units: 𝑚𝑚3/𝑚𝑚3) 
of approximately the upper 5 cm of soil. The SMAP product used here is the level-2 enhanced radiometer half-
orbit 9-km EASE-grid soil moisture (Chan et al. 2018), from the US National Snow and Ice Data Center 
(https://nsidc.org). The SMOS product we use is the level-2 soil moisture product on approx. 25-km grid from 
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ESA’s SMOS online dissemination service (https://smos-diss.eo.esa.int/oads/access/). The active source of soil 
moisture product used in this study is from the Advanced Scatterometer (ASCAT) onboard the MetOp series 
of ESA polar orbiting meteorological satellites. The ASCAT soil moisture product is expressed as a degree of 
wetness (units: %, where 100% suggests saturated soil). The real-time level-2 data a resolution of 12.5 km are 
obtained from EUMETSAT Satellite Application Facilities (H-SAF), which are generated using change 
detection algorithm of Wagner et al. (1999). 

2.3. Evaluation data 

Model performance is evaluated against in situ measurements for four key AWRA-CMS outputs: namely, 
upper-layer soil water storage (𝑆𝑆0), lower-layer soil water storage (𝑆𝑆𝑠𝑠), evapotranspiration (𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡) and runoff 
(𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡). Evaluation of the soil water components of AWRA are against measurements from three soil moisture 
monitoring networks in Australia. The first are in situ measurements from the long-term, well-studied, 
moisture-monitoring network in Murrumbidgee catchment (Smith et al. 2012), known as the OzNet network; 
the second are from network of cosmic ray sensors known as CosmOz (Hawdon et al. 2014). In addition, the 
network of Flux Towers, OzFlux, contain as part of their suite of micrometeorological measurements of soil 
moisture, which will also be used in the evaluations. The model estimates of 𝑆𝑆0  were compared with soil 
moisture measurements at 0-10 cm, whereas the modelled root-zone soil water storage (𝑆𝑆0 + 𝑆𝑆𝑠𝑠 ) were 
compared with measurements up to 100 cm. OzFlux sites are primarily used to evaluate AWRA 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 estimates, 
which have been calculated from accumulated latent heat flux measurements at the sites. Streamflow data used 
to evaluate model estimates were obtained for each AWRA-L calibration and validation catchment (Zhang et 
al. 2013) from the Bureau’s Water Data Online (http://www.bom.gov.au/waterdata/).  Specifically the data 
were obtained for the Bureau’s streamflow time series data management tool, Water Information System 
Kisters (WISKI). Data were converted from cumec (𝑚𝑚3/𝑠𝑠) to mm per day using the catchment area provided 
by the Geofabric (http://www.bom.gov.au/water/geofabric/).  

2.4. Forecast meteorological forcing 

The AWRA model were driven by forecast meteorological forcing to simulate water balance 9 days in advance. 
The forecast forcing data we used is from ACCESS-G APS2, which is the global version of ACCESS. ACCESS 
is an implementation of the UK Met Office’s Unified Model for the Australian region which provides weather 
forecast variables, including rainfall, at a range of spatial scales and forecast lead times. Forecasts are provided 
globally at 0.25° resolution at hourly time steps for 10 days from the model start time. These data were 
resampled to 0.05° spatial resolution and daily temporal resolution, to match the resolutions of AWRA model. 

2.5. Data assimilation 

The method of data assimilation used here is the time sequential updating of model state(s) given observations 
of relevant model variables. Two key modelling components in data assimilation are the dynamics operator, 
which describes the time evolution of the system states and fluxes, and the observation operator, which provides 
the mathematical mapping from state to observation space (or vice versa). Here the dynamics operator is the 
AWRA-CMS. The role of the observation operator, denoted as 𝐻𝐻, is to perform a mapping between observation 
and state space, as often observations are not directly comparable to model states. In the case of satellite SM, 
for example, estimates are provided in volumetric (𝑚𝑚3/𝑚𝑚3), gravimetric and wetness (%) and can represent 
varying soil layer depths. However, AWRA's upper layer soil moisture is given in terms of storage, i.e. mm of 
water and simulated separately for 2 HRUs. The observation operator used in this study is to match the mean 
and variance between model and observations through a linear transformation. In this case, the observation 
operator also simultaneously removes systematic bias between AWRA 𝑆𝑆0 and satellite soil moisture.  

The state updating equation for sequential data assimilation is written generically as: 

𝑋𝑋𝑡𝑡𝑎𝑎 = 𝑋𝑋𝑡𝑡
𝑓𝑓 + 𝐾𝐾𝑡𝑡 �𝑌𝑌𝑡𝑡 − 𝐻𝐻�𝑋𝑋𝑡𝑡

𝑓𝑓��                                         

which says that the best estimate of model state, known as analysis (𝑋𝑋𝑡𝑡𝑎𝑎), is equal to the first guess or forecast 
estimate (𝑋𝑋𝑡𝑡

𝑓𝑓) plus a weighted difference between observations, 𝑌𝑌𝑡𝑡, and the model equivalent to the observation 
(𝐻𝐻�𝑋𝑋𝑡𝑡

𝑓𝑓�), for that time step. The multiplier, 𝐾𝐾𝑡𝑡, is known as the gain factor which contains information of the 
respective uncertainty in the model estimates and observations. The state variable of focus in this study is the 
storage in the upper soil layer, 𝑆𝑆0.  

The gain contains the information on the error variances of the model and observations. Error characterization 
in any field of research is a challenge mainly because there is rarely, a truth. Ensemble methods of data 
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assimilation use random perturbations to the forcing data and model states to generate an empirical distribution 
of model estimates from which model error can be inferred. However these methods rely on an initial guess at 
what the magnitude of the error variance should be, and then post hoc correction to the ensemble are applied 
(e.g. inflation factors, Anderson (2009)) to ensure ensemble variance is a good approximation of the actual 
model error. Similarly the observation error variance, is often estimated through field campaigns (Panciera et 
al. 2014), but these rarely represent the spatial and temporal variability in errors. Alternatively, the data 
providers often specify an error estimates but can be overly optimistic in the magnitude of the errors.  

Triple collocation (TC) was developed as a method of quantifying error characteristics in geophysical variables 
when the true error structure is elusive, first applied to near-surface winds (Stoffelen 1998) and later extensively 
applied, to soil moisture (McColl et al. 2014; Scipal et al. 2008) and rainfall (Massari et al. 2017). The basis of 
the approach is that under the assumption of linear Gaussian statics, three independent data sets of the same 
geophysical variable can be used to infer the error variances in each. Here we used TC as a way of inferring 
error variances needed to calculate 𝐾𝐾  from time series of AWRA 𝑆𝑆0  and each satellite SM products. To 
illustrate we consider the AWRA 𝑆𝑆0, SMAP, and SMOS, as our three independent sources of soil moisture 
estimation. From the extended TC method of McColl et al. (2014), the correlation of each of the soil moisture 
estimates with the unknown truth is given by: 

𝜌𝜌𝑥𝑥2 = 𝑄𝑄𝑥𝑥,𝑦𝑦𝑄𝑄𝑥𝑥,𝑧𝑧
𝑄𝑄𝑥𝑥,𝑥𝑥𝑄𝑄𝑦𝑦,𝑧𝑧

,  𝜌𝜌𝑦𝑦2 = 𝑄𝑄𝑥𝑥,𝑦𝑦𝑄𝑄𝑦𝑦,𝑧𝑧
𝑄𝑄𝑦𝑦,𝑦𝑦𝑄𝑄𝑥𝑥,𝑧𝑧

, and  𝜌𝜌𝑧𝑧2 = 𝑄𝑄𝑥𝑥,𝑧𝑧𝑄𝑄𝑦𝑦,𝑧𝑧
𝑄𝑄𝑧𝑧,𝑧𝑧𝑄𝑄𝑥𝑥,𝑦𝑦

                 

where 𝑥𝑥,𝑦𝑦  and 𝑧𝑧  subscripts can denote AWRA, 
SMAP or SMOS soil moisture estimates, 
respectively, 𝑄𝑄𝑥𝑥,𝑥𝑥,𝑄𝑄𝑦𝑦,𝑦𝑦  and 𝑄𝑄𝑧𝑧,𝑧𝑧  are the temporal 
variances and 𝑄𝑄𝑥𝑥,𝑦𝑦 , 𝑄𝑄𝑥𝑥,𝑧𝑧  and 𝑄𝑄𝑦𝑦,𝑧𝑧  are the temporal 
covariance between data sets. The error variances can 
be calculated for AWRA, SMAP and SMOS 
respectively as follow: 

𝜎𝜎𝑥𝑥2 = (1 − 𝜌𝜌𝑥𝑥2),  𝜎𝜎𝑦𝑦2 = �1 − 𝜌𝜌𝑦𝑦2�, and 𝜎𝜎𝑧𝑧2 = (1 − 𝜌𝜌𝑧𝑧2)        

The reciprocal of these variances were used as indicators of the weight of influence that the respective source 
should have on the analysis estimate: i.e. low variances suggest more weighting than higher variances.  

3. RESULTS 

In order to assimilate satellite soil moisture, we first examined differences between three satellite soil moisture 
products, namely SMAP, SMOS and ASCAT. Understanding that the satellite, AWRA and in-situ data all 
represent soil moisture in different units, the Pearson correlation coefficient was the most relevant metric in 
evaluating performance. This statistic is summarized for each of the measurement networks in Figure 1 for the 
2016-2017 period.  Compared to AWRA model open-loop simulations, SMAP soil moisture generally showed 
better consistency with in-situ soil moisture measurements over a majority of CosmOz and OzNet sites. Overall 
ASCAT showed consistent poorer performance than the other satellite products. This is likely due to the 
comparative noisiness of the ASCAT product. The results demonstrated that satellite soil moisture products 
show great potential to improve model estimation of top-layer soil moisture. 

Since SMAP and SMOS show overall better 
agreement with in-situ measurements with an 
average correlation of 0.71 and 0.64 comparing 
to ASCAT (0.58), we assimilated SMAP and 
SMOS into AWRA model to update the model 
simulated upper layer soil water storage. The 
error variances for AWRA, SMOS and SMAP 
were calculated using triple collocation 
method to ultimately weight the contribution of 
each data set in the data assimilation (Figure 2). 

The AWRA model estimate driven by gauge-based rainfall analyses cannot properly simulate soil moisture 
patterns over regions with a lack of rain gauge coverage such as Western Australia (WA). The water storage 
simulations over these regions default to zero, thus no weights were given to the AWRA estimates (Fig. 2a). 
The assimilation of satellite SM introduces variability of surface SM through the direct updating of 𝑆𝑆0. It 
largely mitigated the erroneous artefact of zero precipitation gaps over WA. Figure 3 shows the changes in 

 
Figure 1. Comparison of Pearson correlation 
coefficients between surface soil moisture derived 
from SMAP, SMOS and ASCAT satellites and 
AWRA open-loop simulation against in-situ 
measurements from (a) Ozflux, (b) CosmOz and (c) 
OzNet network sites. 

 
Figure 2. Triple collocation (TC) estimates of correlation 
with the truth for (a) AWRA-simulated upper layer soil 
water storage (b) SMOS soil moisture retrievals and (c) 
SMAP soil moisture retrievals. 
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model simulated 𝑆𝑆0  after the assimilation during cyclone periods with heavy rainfall over those areas. 
Increasing soil moisture following the cyclone track was observed after the assimilation of satellite SM. 

Consistent improvements against model 
open-loop were found after the 
assimilation for  𝑆𝑆0 over all the in-situ sites 
(Figure 4a). In particular, the sites where 
satellite SM shows less correlation with 
model open-loop (Fig. 1) were also 
improved. Thus, the assimilation optimally 
combined the information from both 
model and observations to reduce the 
model uncertainties. The assimilation 
improved the daily correlation between in-
situ surface SM measurements by 0.14, 
0.26 and 0.18 on average for OzFlux, 
OzNet and CosmOz sites respectively. 
Overall, there is no degradation on 
estimates of root-zone soil water storage, 
Etot and Qtot (Fig. 4 b-d). This result is not 
surprising since those variables were not 
directly updated with the assimilation. The 
model S0 for individual month over OzNet 
sites were improved most in terms of 
correlation among the three surface soil 
moisture networks (Fig. 4e). The 
improvements were mainly found in rainy 
seasons from May to October with a 
median correlation improvement of over 
0.3. The assimilation shows positive 
impacts on the simulation of temporal variability of streamflow for majority of catchments (Fig. 4d). Figure 5 
shows the simulation of streamflow dynamics compared to in-situ measurements. The increasing soil water 
storage in the upper layer resulted in the increasing streamflow and better agreement with in-situ measurements 
during wet seasons.   

Forecast forcing meteorology were used to 
drive AWRA model estimates 9 days into 
the future. Given that the evaluation above 
shows soil moisture assimilation has the 
strongest impact on 𝑆𝑆0 , our exploration of 
the impact of forecasting is limited to this 
variable. Figure 6a illustrates the temporal 
behavior of mean relative absolute bias 
(MRB) for each month in terms of median 
value across the country for each forecast 
lead time. We see that MRB increase with 
lead time over the year, with 1-day lead time 
forecast median MRB ranging from 55-
80%, while 9-day MRB considerably more 
variable ranging from 80-200%. We also 
observe that that June and July have lower 
MRB than other months, particularly 
November, December and January. This 
temporal pattern in MRB is typical of what 
we see in rainfall error statics (e.g. Chappell 
et al. (2013)), where the broad extent of 
monsoon rainfall across northern Australia 
dominates the nation-wide statistics in the 
summer months. Finally, to assess how long 
the improvements in AWRA forecasts 

 
Figure 3. Cyclones track of (a) Stan overlaying accumulated 
rainfall for the period of 28 Jan - 03 Feb, 2016; average AWRA 
𝑆𝑆0 from open-loop (b) and analysis simulations (c) during 
cyclone Stan. 

 
Figure 5. Analysis increments (difference between analysis 
and forecast) of 𝑆𝑆0 and the impacts on streamflow. (a)-(b) Time 
series of streamflow measurements and model simulations.  

 
Figure 6. (a) Australia-wide median MRB for each month of 
the year for forecast 𝑆𝑆0 at lead times 1- to 9-days. (b) Australia-
wide median MRB as a function of lead time for forecasts from 
open-loop (red) and analyzed (blue) 𝑆𝑆0.  
 

 
Figure 4. Temporal correlation of model-simulation and in-
situ measurements at daily time step for (a) 𝑆𝑆0, (b) root-zone 
soil water storage, (c) 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 and (d) 𝑄𝑄𝑡𝑡𝑡𝑡𝑡𝑡 during 2016 to 2018. 
(e) Changes in correlation of 𝑆𝑆0 after the assimilation for 
individual months.  
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persist due to soil moisture assimilation, we compared the Australia-wide median MRB for the forecasts made 
from open-loop with analyzed 𝑆𝑆0 states (Figure 6b). Note that MRB values for forecasts made from the open-
loop 𝑆𝑆0 states were evaluated against analyzed states (as the reference). We see in Fig. 6b that MRB plotted as 
a function of lead time increases with lead time (as expected), but that the open-loop MRB's are always higher 
than those based on analyzed 𝑆𝑆0. A direct comparison between open-loop and analysis forecasts skill is unfair 
since analysis soil moisture were used to calculate the skill metric (MRB). Instead we could compare the 
respective asymptotic behavior of skill with lead time of both. The red dashed lines in Fig. 6b is a line of best 
fit to the open-loop MRB. It is included here to highlight the oblique asymptotic behavior. The blue dash line 
is parallel to the red (shifted only vertically by an offset). The figure suggest that improvements in the analyzed 
𝑆𝑆0 can persist up to 4 day, but possibly longer, until improvements in forecasts performance resembles that of 
open-loop simulations.  

4. DISCUSSION AND CONCLUSION 

In this study, we proposed a simple and robust method for assimilating satellite SM products into AWRA as a 
first step towards a new data assimilation (DA) capability for the operational system. The method involves the 
sequential (daily) updating of AWRA model's upper layer soil water storage with satellite SM observations 
through a linear combination with weights determined through triple collocation. 

Despite the model estimates of upper layer soil water storage performing better at some locations than the 
satellite products, we have conclusively demonstrated using AWRA-CMS version 6.1 that the method 
improves both the accuracy (assessed against in-situ data) and representation (e.g. in areas of sparse rain gauge 
coverage) of upper layer soil water storage estimates in comparisons with AWRA open-loop (i.e. without DA) 
simulations. The biggest improvements occurred over the winter rain months of the year. The proposed method, 
with weightings determined a priori (offline) through triple collocation is fast to implement and unlikely to 
require significant modifications to the current operational workflow of Bureau's AWRA-L modelling system. 

The analyzed upper layer soil water storage imparts constraint on the other states at the following time step of 
the AWRA model through the dynamic operator. It is the relationships between upper layer soil water storage 
and the other soil water stores, evapotranspiration and streamflow in the model that determines what impact 
the improved upper-layer soil water storage may have on them. Given the order of magnitude difference in the 
respective sizes of the water storages of the upper-layer (10 cm thick) and the subsequent lower-layer making 
up the root-zone (90 cm thick), it perhaps is not too unexpected to see little impact on the root-zone. For a more 
direct, faster constraint on all model states, a simultaneous updating of all model states would need to be 
developed. Overall improvements were found in streamflow simulation in the rain months and this is because 
the assimilation of SM adds moisture to the system where the model on its own under-estimates it, leading to 
better representation of flow during this time.  

Our assessment of the impact of soil moisture data assimilation revealed that forecast accuracy persists in the 
upper layer soil water storage for up to 4 days lead time. This was based on a comparison of the behavior of 
the open-loop and analysis-based mean relative absolute bias (MRB) curves. Both showed MRB increasing 
with increasing lead time, as one would expect, but it took 4 days for the analysis-based results to exhibit the 
same asymptotic behavior as the open-loop results. From this we may conclude that the improvements from 
SM assimilation can last up to 4 days longer in 𝑆𝑆0 forecasts than without assimilation. While this is a valid 
approach to forecasts verification, and quantifies the theoretical skill, an objective analysis would involve 
evaluation against independent ground-based data. An obvious next step in this component of the investigation 
would be to evaluate the open-loop and analysis-derived forecasts against the in-situ surface soil moisture 
monitoring networks. 
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