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Abstract: Surface water bodies such as lakes, rivers and wetlands are critical water resources to both human 
and ecological systems, but are under increasing pressure from competing users. Monitoring of the location, 
quantity and movement of water is crucial in effectively managing these resources and implementing a 
sustainable water management strategy for the future. However, continuous information on the quantity and 
distribution of water across the landscape is limited in some regions because of the high cost of traditional in-
situ monitoring. As such, global remote sensing datasets are being used more frequently to complement these 
sparse networks. This paper aims to develop new methods to estimate the quantity of water (volume) in open 
water storages such as lakes, using remote sensing data. 

Lake Menindee, part of the greater Menindee Lakes complex in the Murray-Darling Basin, was selected as the 
case study of this research because of its geographic location and data availability. Water management in the 
Murray-Darling Basin has been under increasing scrutiny partly due to exposure of water theft by irrigators. 
As such, there is a pressing need for large scale monitoring of water resources in the region using novel data 
and methods. 

This paper developed three methods to estimate water volumes in a lake, all of which only used a high-
resolution (5m) LiDAR DEM in conjunction with optical imagery. As an initial preprocessing step, the water 
observations from space (WOfS) algorithm (Mueller et al. 2016) was applied to Landsat optical imagery to 
detect areas of surface water in the lake which was used as an input to all the methods. The first method derived 
a relationship between lake inundated surface area and volume using the DEM. Subsequently, this relationship 
was used to convert WOfS-derived surface areas to volumes. The second method evaluated the quality of match 
between the WOfS spatial inundation pattern and DEM-modelled inundation patterns at 0.1m water level 
increments, from which an optimal match and the respective DEM-derived volume was picked. Quality of 
match was quantified with three metrics commonly used in weather forecasting. In the third method, the 
elevation of the WOfS water body edge was derived from the DEM, and a volume was estimated by “filling” 
the lake DEM to this height.  

Water volumes by all three methods were estimated using 19 years of high-quality Landsat data equivalent to 
209 scenes, and daily gauged measurements were used for validation. A combination of scatterplots and 
statistical metrics were used for evaluation. 

Initial findings show that all methods have reasonable skill in estimating water volumes with high Pearson 
correlation coefficients, and estimates from methods 2 and 3 have relative biases of less than 10 percent. No 
single method performed consistently better across all ranges of volumes, with method 3 having poorest 
performance for low volumes while method 1 substantially overestimated high volumes. Additionally, 
estimation errors were volume-dependent, with medium-range of volumes having highest accuracy estimates 
while prediction skill consistently worsened at higher volumes across all methods. Future research should 
further investigate drivers of the volume-dependent errors, expand the evaluations to multiple case studies, 
including the large on-farm water storages across the Murray-Darling Basin, and test other remote sensing data 
sources such as radar altimetry. These results clearly demonstrate the potential of remote sensing based 
methods for lake volume estimation.   
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1. INTRODUCTION 

Water is an essential resource for every aspect of human life, used for drinking, agriculture, transportation, 
electricity production, and other industrial activities. Additionally, water is critical for preserving biodiversity 
and ecosystems. Surface water bodies such as lakes, rivers, and wetlands are critical water resources (Huang 
et al. 2018) that need to be properly managed to balance human use and ecosystem protection (Vörösmarty et 
al. 2010). Therefore, observation and monitoring of these water bodies is crucial for ensuring effective water 
management strategies. However, this is hampered in some regions by a lack of data, as traditional in-situ 
observation and monitoring networks are not cost-effective in capturing the temporal dynamics of numerous 
water bodies over large regions. 

Remote sensing provides effective and efficient opportunities to continuously observe and monitor global water 
dynamics at various spatial and temporal scales (Huang et al. 2018) and to supplement in-situ networks. 
Previous studies have focused on the use of optical sensors such as Landsat for detecting and mapping surface 
water boundaries, with extensive research investigating the suitability, accuracy and limitations of several 
water detection indices and algorithms. Fisher at al. (2016) compared several water indices for automatic 
mapping of surface water across Qld and NSW using Landsat imagery. This study found that no single index 
performed best across all water types, and misclassification was most common in murky / green water or water 
bodies with large mixed pixel count. Similarly, Mueller et al. (2016) developed a water detection algorithm 
called Water Observations from Space (WOfS) to map surface water extents across Australia using the entire 
Landsat record, providing important multi-decadal information on water dynamics across the continent.  

Even though water extent mapping provides valuable information on the distribution of water in the landscape, 
estimates of water quantity are necessary for effective management. Water extent information has been coupled 
with satellite altimetry data to estimate lake volume dynamics in the U.S.A., Europe and Africa (Baup et al. 
2014; Duan and Bastiaanssen 2013; Tong et al. 2016). This approach couples coincident water level (altimetry) 
and surface area (optical imagery) data, from which a level-area-volume relationship is derived and applied to 
historical imagery. Despite this method performing well in most case study regions, it is limited to areas with 
altimetry data and has typically been applied to large reservoirs. More research is necessary to develop and 
assess volume estimation methods that are not dependent on altimetry data and are applicable to smaller 
reservoirs. 

Therefore, this paper aims to develop water volume 
estimation methods using optical imagery in conjunction 
with other commonly available remote sensing datasets, 
such as DEMs. Three potential methods are evaluated 
utilising the WOfS algorithm for water detection and a 
LiDAR-derived high-resolution DEM. This case study is 
on Menindee Lakes in the Murray-Darling Basin, New 
South Wales, Australia, are used as a case study, where 
water management has been under increasing scrutiny due 
to water theft by irrigators and mass fish kills. 

2. THE MENINDEE LAKES COMPLEX 

The Menindee Lakes complex was chosen as the study 
location for our research due to its geographic position in 
the Murray-Darling Basin and data availability in an 
otherwise relatively data sparse region. The complex is 
located alongside the Darling River towards the western 
end of the basin and consists of four main lakes, namely 
lakes Wetherell, Pamamaroo, Menindee (the largest lake) 
and Cawndilla (Figure 1). The lakes are situated in a semi-
arid environment (244 mm/yr mean rainfall) and are 
shallow with a large surface area. The NSW government 
manages the Lakes system under the Murray-Darling 
Basin Agreement, to provide water to ecosystems, local 
community needs and downstream water users. This study 
focuses on Lake Menindee in particular, which has a 
maximum storage volume of 900 GL and a long historical 
record of daily water volume measurements making it 
ideal for method validation (Figure 1b).  

Figure 1. a) Location of the Menindee Lakes 
complex showing Lakes Menindee and 

Pamamaroo; b) Daily time series of Lake 
Menindee water volumes since 2000. Red 

dots indicate timing of Landsat images used 
in methods assessment. 
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3. METHODS 

The research approach employed in this 
paper is made up of three main components 
which are discussed in further detail in the 
following sections: 1) data and data 
preprocessing, 2) water volume estimation, 
and 3) results validation. A flow chart 
depiction of the entire process is shown in 
Figure 2 with the three main subsections 
outlined in orange, green and blue 
respectively.  

3.1. Data and data preprocessing 

Water detection 
For the purposes of quantifying reservoir 
water volumes at Lake Menindee, we used 
the WOfS algorithm (Mueller et al. 2016) as 
the primary means of surface water 
detection. WOfS is a nationally calibrated 
algorithm developed to classify decades of 
satellite imagery data at the continental scale 
into wet or dry classes. WOfS was applied to 
19 years of Landsat data with a 25m pixel 
resolution (1 January 2000 to 31 December 
2018) covering the Lake Menindee area. 
Only images with a minimum of 95% high 
quality pixels were considered for the volume calculations. High quality pixels are those without cloud cover, 
shadow and band saturation issues. Instead of using the ready-made WOfS product, we preferred this approach 
as it reduced spurious “not-wet” classifications due to pixel quality issues rather than pixels being genuinely 
dry. A total of 209 scenes of suitable quality were identified (Figure 1b), where at least some water was present 
in the lake in 198 scenes. Volumes were assumed to be zero if no wet pixels were identified. 

LiDAR-derived DEM 
A 5m cell-size LiDAR-derived DEM of Lake Menindee, produced by Geoscience Australia, was obtained from 
ELVIS. The lake was empty at the time of the LiDAR survey, making it ideal for quantifying storage volumes. 
To quantify the expected inundated surface area, storage volume and the spatial inundation pattern (pixel 
classification into wet or dry) at different water depths, the DEM was “filled” in 10 cm increments from empty 
(53.5 m ASL) to 1.5 m above the maximum recorded water height (63 m ASL), resulting in 96 water depths. 
“Filling” was carried out starting at the lake intake point with the “r.lake” tool in QGIS. DEM outputs were 
then used in Methods 1 and 2 (Section 3.2) for water volume estimations (Figure 2). 

Lake Menindee gauged data 
Historical daily measurements of water depth and volume at Lake Menindee were obtained from WaterNSW 
(Site no.: 425022). Gauge data was firstly used to check that the DEM-derived water storage volumes were 
reasonable. Next, the historical readings shown in Figure 1b were used to validate water volume estimates 
obtained from the different methods. As DEM-derived volumes had a small but consistent systematic bias 
when compared to the gauge data, historical readings were adjusted accordingly to remove this bias effect in 
the validation process. Lake rating curves were not freely accessible to determine the cause of this discrepancy, 
but we suspect that they were constructed with older and lower resolution data than the LiDAR DEM. 

3.2. Water volume estimation 

Method 1: Surface area – volume relationship 
DEM-derived surface area and volume estimates (across different water depths) were used to develop an 
empirical surface area – volume relationship (SAV), and used as the first method of estimating water volumes 
in storage. This approach is fundamentally very similar to other altimetry-based methods such as that of Duan 
and Bastiaansen (2013) except that the SAV relationship is derived with a DEM as opposed to coincident 

Figure 2. Flow chart of the research process with sections 
outlined in different colours: 1. data preprocessing (orange), 2. 

volume estimation (green) and 3. validation (blue). 
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altimetry readings and optical imagery. For each WOfS scene, lake surface area was calculated by quantifying 
the area of wet pixels within the lake extent and converted into a respective volume using the SAV relationship. 

Method 2: Pixel matching 
The second water volume estimation method focuses on the spatial pattern of lake inundation (i.e. which pixels 
are being classified as wet or dry) as opposed to just the total inundated area (irrespective of whether the same 
pixels are wet). This “matching” of pixels may be important in relatively flat regions where the “wetted” area 
could be inflated at low water levels due to shallow disconnected pools forming after heavy localized rain or 
receding waters. Additionally, in comparison to area-based methods, this approach should be far less 
susceptible to biases induced from poor quality and thus misclassified pixels (e.g. clouds) or missing data. 

As this is a new approach, three metrics commonly used in weather forecasting were trialed and applied to 
quantify the similarity in inundation patterns (i.e. wet / dry pixel classifications) between a WOfS scene and a 
DEM-derived inundation pattern: 1) accuracy index (ACC), 2) critical success index (CSI), and 3) Heidke skill 
score (HSS). For the purposes of calculating scores, the WOfS scene was assumed to be the ‘observation’ while 
the DEM pattern the ‘simulation’. ACC measures the proportion of pixels within the lake that were correctly 
‘simulated’ (as wet or dry), the CSI measures the proportion of correctly ‘simulated’ wet pixels to the total 
number of ‘observed’ or ‘simulated’ wet pixels, and the HSS quantifies the skill of the pixel matches accounting 
for matches due to random chance. Each of the metrics have a perfect score of one and are defined as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴 =  
ℎ + 𝑛𝑛

ℎ + 𝑓𝑓 + 𝑚𝑚 + 𝑛𝑛
(1) 

𝐴𝐴𝐶𝐶𝐶𝐶 =  
ℎ

ℎ + 𝑓𝑓 + 𝑚𝑚
(2) 

𝐻𝐻𝐶𝐶𝐶𝐶 =  
2. (ℎ.𝑛𝑛 − 𝑓𝑓.𝑚𝑚)

(ℎ + 𝑓𝑓). (𝑓𝑓 + 𝑛𝑛) + (ℎ + 𝑚𝑚). (𝑚𝑚 + 𝑛𝑛) (3) 

where ‘h’ represents number of hits (pixels classified as wet by both WOfS scene and DEM), ‘m’ is number 
of misses (pixels classified as wet by DEM but as dry by WOfS scene), ‘f’ is number of false alarms (pixels 
classified as wet by WOfS scene but as dry by DEM) and ‘n’ is number of correct negatives (pixels classified 
as dry by both WOfS scene and DEM). 

These metrics were applied as follows to estimate water volume of a WOfS scene: 1) Similarities in inundation 
patterns between the WOfS scene and each of the 96 DEM-derived patterns (corresponding to each 10 cm 
water depth increment) were quantified per metric. 2) Water volume was estimated by assigning the volume 
of the depth increment with the highest (optimal) score. 3) Steps 1 and 2 were repeated for each individual 
metric resulting in three estimates per scene, that are referred to from here on as method 2 (ACC, CSI or HSS). 

Method 3: Water edge elevation 
Lastly, elevation of optical imagery-derived water boundary was used to derive storage water volumes using a 
similar approach to that of Tseng et al. (2016). The water body boundary (edge) of Lake Menindee was derived 
in each WOfS scene as the outside of the wet pixels. DEM elevations of overlapping pixels were extracted and 
boundary elevation statistics (median and 25th and 75th percentiles) quantified. The QGIS “r.lake” tool was 
used to “fill” the lake to the three respective water heights, from which three volumes for each WOfS scene 
were estimated, that are referred to from here on as method 3 (median, 25th or 75th percentiles).  

3.3. Validation 

Corrected daily WaterNSW gauge readings were used to validate water volume estimates over the 19 year 
analysis period. Coincident gauge readings were extracted for each WOfS scene using the Landsat image 
timestamp. The first part of the validation procedure assessed whether the estimation methods were able to 
determine if the lake was empty or not (referred to as “dry lake detection”) using a contingency table. In 
addition, volume estimates of scenes falsely identified as not dry were investigated to determine the magnitude 
of errors. The second part of the validation procedure evaluated and compared estimates from the three 
approaches using scatter plots and statistical metrics including relative bias (RB), normalised root-mean-
square-error (nRMSE), mean absolute bias (MAE), Pearson correlation coefficient (r), and fitted slope of a 
linear regression. Only estimates of WOfS scenes correctly identified as “not dry” were considered. The 
influence of volume and hydrograph position on estimates was also explored by categorising the data into three 
(low ≤ 100,000 ML < medium < 600,000ML ≤ high) and two classes (rising-falling limb) respectively.  
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4. RESULTS 

4.1. Dry lake detection 

This section assessed how accurately the estimation 
methods could determine whether the lake was empty 
(dry) or not using a contingency table approach shown in 
Table 1. The lake was considered ‘dry’ if the volume was 
0ML and ‘wet’ if it was greater than 0ML. The columns 
show the classification based on WaterNSW data and the 
rows are based on the estimation methods, where all 
methods with same results were lumped together for 
brevity. All volume estimation methods show good skill 
at detecting if there is any water in the lake, with only 
one scene being wrongly classified as ‘dry’ while 
actually ‘wet’ according to WaterNSW (Table 1). On the 
other hand, all methods have a tendency to classify lakes 
as ‘wet’ when they are ‘dry’ according to WaterNSW. 

Table 2 shows the volume 
estimate statistics of 
misclassified scenes for each 
method, indicating the 
number of scenes that 
estimated a volume below / 
above a certain threshold 
and also the maximum 
estimated volume. When 
interpreting these results, 
lower volumes indicate smaller errors while larger volumes indicate larger errors as the lake is ‘dry’ according 
to the WaterNSW data. The results indicate that method 2 (ACC), followed by method 1, have the smallest 
volume estimates, i.e. the smallest errors. Overall, nearly all volume estimates are very small (less than 100 
ML), other than for method 3 (75th percentile) which has the poorest performance (10 scenes have volume 
>100ML and a maximum value of 129,711ML). A visual inspection of the WOfS scenes with larger errors 
shows that these are as a result of small patches of water distributed at higher points on the lake floor.  

4.2. Water volume estimation  

Next, accuracy of the volume estimates from the three estimation methods was evaluated. For this purpose, 
only scenes with water estimates greater than 0ML were considered (i.e. scenes classified as ‘wet’ in the 
previous section). Figure 3 shows a scatterplot of observed versus predicted volumes for all three methods and 
metrics. Overall, all methods exhibit relatively good skill in estimating volumes across the low and middle 
classes. However, there is a general divergence from the observations at higher values across all methods. This 
could be indicative of poorer prediction skill at higher volumes, but it might also be attributed to errors in the 
lake rating curve conversions from water depth to volume at higher volumes. This could not be checked as 
information on the rating curve and its derivation is not accessible. 

Figure 4 shows the suite of statistical metrics that were computed for all three methods for the entire dataset 
and the individual volumetric and hydrograph classes. For the entrie dataset, these metrics confirm that all 
methods have overall satisfactory estimation skill, with reasonably low relative biases (+10 to -20%), slopes 
(0.75 to 1.25), nRMSEs (0.15 to 0.3), and very high Pearson correlation coefficients (~ 0.99). Most of the 
methods tend to underestimate volumes, other than for method 1 which overestimates volumes by 10%. 

Overall, method 3 (75th percentile) has the highest accuracy, with an RB of -3% and the best scores across four 
of the five measures (RB, nRMSE, MAE, slope). All three method 2 metrics are the next most accurate, with 
nearly identical nRMSE, r, and slope scores when compared to method 3 (75th percentile), however CSI 
minutely outperforms ACC, followed by HSS as the least accurate metric. Conversely, method 3 has a definite 
hierarchy with performance substantially improving from the 25th percentile to the median, and from the 
median to the 75th percentile.  

Next, method performance was evaluated and compared across the three volume classes (low, medium, and 
high). A negative RB score and slope less than 1 indicates that there is a general tendency to underestimate  

Table 1. Dry lake detection contingency table. 
All methods with same results are lumped 

together for brevity. 
  WaterNSW data  

  Dry Wet Total 

Methods 1, 2 
and 3 (75th 
percentile) 

Dry 10 1 11 

Wet 73 125 198 

Method 3 
(25th 

percentile) 

Dry 47 1 48 

Wet 36 125 161 

Method 3 
(median) 

Dry 15 1 16 

Wet 68 125 193 
 Total 83 126  

 Table 2. Volume estimate statistics of misclassified scenes (lake was 
classified as ‘dry’ by WaterNSW and ‘wet’ by the methods) for each method. 

  1 2: 
ACC 

2: 
CSI 

2: 
HSS 

3: 25th 
perc. 

3: 
Median 

3: 75th 
perc. 

Number 
of data 
points: 

All 73 73 73 73 36 68 73 
Vol≤10ML 63 73 69 69 28 41 56 

Vol≥100ML 0 0 1 1 1 2 10 
Max volume (ML) 73 8 5,858 5,858 25,819 59,139 129,711 
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volumes across all classes and methods, with the exception of “high” volumes being overestimated by method 
1, and method 3 (75th percentile) overestimating “low” volumes while having nearly unbiased estimates of 
“medium” volumes (RB ~0%). Estimates of “medium” volumes generally have the highest accuracy and 
consistency across all the different methods, other than for method 3 (25th percentile). Interestingly, even 
though method 1 had the second lowest prediction accuracy when using the entire dataset, this result was not 
reflected across individual volume classes. Method 1 “low” volume estimates had the highest scores across 3 
of the 5 measures (nRMSE, MAE, and r). On the other hand, the opposite trend was observed for method 3 

Figure 3. Scatterplot of observed versus predicted volume for all three methods and metrics. Boundaries 
of volumetric classes are indicated with vertical dashed lines, the solid line shows the 1:1 relationship, 

while points are coloured based on their hydrograph position. 

  
Figure 4. Plots of statistical metrics for all three methods and metrics for the entire dataset (all) and also 
split into volumetric (low, medium and high) and hydrograph (rising and falling limb) classes. Black dots 

highlight best performing method for each class. 
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(75th percentile) which had relatively poor accuracy at “low” volumes (lowest nRMSE, MAE, and r). Lastly, 
differences in accuracy were not as evident between hydrograph classes (rising or falling limb).  

5. DISCUSSION AND CONCLUSIONS 

In this study, we investigated the potential of using a combination of optical imagery (Landsat) and DEMs for 
estimating the quantity of water being stored in lakes / reservoirs over time without any in-situ monitoring. We 
evaluated the accuracy of three different estimation methods. To the authors’ best knowledge, this is the first 
time the method 2 has been applied to estimate lake water volumes. Lake Menindee, a steep-sided lake with a 
large surface area, was used as the case study due to data availability and its locally typical morphology.  

A summary of the main findings to date are: 1) All methods have reasonable water volume estimation skill 
with high correlation scores and the higher accuracy methods have relative biases of less than 10%. 2) Most 
methods have a tendency to slightly underestimate volumes. 3) Accuracy consistently degrades at high 
volumes, this could be linked to potential errors in the lake rating curve at high volumes but this data could not 
be verified. 4) Not all methods perform equally well across all volume ranges, with methods 1 and 2 exhibiting 
better skill at low volumes (for both dry lake detection and rate estimation), while method 3 does best in the 
medium volume range. 

The findings of this paper have potentially significant implications not only for scientists but also for water 
practitioners such as managers and compliance officers, who are expected to equitably manage a resource that 
is under increasing stress and is a point of conflict for competing users. To improve the usefulness of our 
approach, future research should investigate the source of errors of the proposed methods (especially for higher 
volumes), and test them on multiple case studies of ideally differing characteristics (volume, surface area, etc.). 
Furthermore, the current methods use Landsat data which has two main limitations: 1) relatively infrequent 
readings compounded by cloud obstruction (our study averaged a good image every 33 days), and 2) coarser 
resolution (25m) which may be inadequate in capturing water dynamics of smaller features. Newer products 
derived from Sentinel 1 and 2 may prove useful in addressing these issues. Future work should aim to merge 
multiple data sources, and even use more frequent ancillary datasets associated with water presence such as 
land surface temperature. Addressing these limitations is important before this approach can be confidently 
applied at larger scales.  
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