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Abstract: The challenge of sustainable fishery management is to design harvest policies that attain the dual 
objectives of: (a) protecting the species from over fishing, and (b) ensuring adequate economic return to fishers. 
It is clear that a suitable compromise between these two, conflicting, objectives must be achieved. However, a 
major difficulty stems from the need to deal with various sources of uncertainty associated with the fluctuations 
of the population, such as sea-surface temperature, pollution, or levels of nutrients. This is further complicated 
by the uncertainties associated with the effects of the management decisions and fishing pressure.

Partially Observable Markov Decision Processes (POMDPs) provide a natural mathematical framework for 
incorporating these uncertainties in the decision making process. This was already recognised by several 
authors. However, the promise of POMDPs has not yet been realised because they are provably computationally 
hard to solve in general, and for many years were considered to be solvable only for toy problems. In addition, 
the underlying dynamics of fish populations are normally described by deterministic difference or differential 
equations and it is not entirely clear how these should be incorporated into the stochastic dynamics of POMDPs.

This paper summarizes a, still preliminary, study that tackles both of the above problems. In particular, 
the computational complexity problem is tackled with the help of suitable discretization of state and action 
spaces and DESPOT; a state-of-the-art POMDP solver. In addition, the deterministic dynamics of the widely 
used Beverton-Holt model are modified to incorporate stochasticity in both the proliferation rate and in the 
observations based on catch and the outputs of the latter model.

The resulting POMDP formulation takes into account some of the uncertainties in managing fisheries, and 
shows that an adaptive management policy can be more advantageous than a simple fixed action policy. We 
also report on experiments with various modelling choices and their effects on the resulting policy.

Finally, recognising that POMDP policies are sometimes hard to interpret, we demonstrate that our adaptive 
management policy possesses an attractive feedback (or closed-loop) structure. Namely, the actions selected by 
that policy depend on the current expected biomass of the harvested species. Effectively, the policy maps the 
current expected biomass to a decision to use certain harvest levels in prescribed proportions. Naturally, when 
the expected biomass is low the more conservative (i.e., lower) harvest actions are preferred. On the other hand, 
when the expected biomass is high, actions corresponding to higher harvest levels are selected. Nonetheless, the 
most intensive (i.e., greedy) harvest levels are never selected because of the sustainability concerns.
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1 INTRODUCTION

The fishing industry plays an important socioeconomic role in Australia. However, developing predictable
sustainable management policies is challenging and the decision-making process is slow. Thus there is a need
to develop efficient decision-making techniques for sustainable fishery management (Queensland Department
of Agriculture and Fisheries, 2017).

The challenge of sustainable fishery management is to design harvest policies that attain the dual objectives of:
(a) protecting the species from over fishing, and (b) ensuring adequate economic return to fishers. It is clear that
a suitable compromise between these two, conflicting, objectives must be achieved.

A fundamental difficulty lies in quantifying the uncertain impact of harvest policies on the population of the
harvested species. This is compounded by other sources of uncertainty associated with the growth of the
population and abiotic environmental factors such as seas surface temperature, pollution or turbidity. Partially
Observable Markov Decision Processes (POMDPs) provide a natural and rigorous mathematical framework for
incorporating such uncertainties in decision making. This was already recognised in (Lane, 1989). However,
that promise has not yet been realised because POMDPs are provably computationally hard to solve in general,
and for many years were considered to be solvable only for toy problems.

Fortunately, many advanced algorithms have been developed in the past two decades (Kurniawati et al., 2008;
Silver and Veness, 2010; Ye et al., 2017). We believe that these advances have made POMDPs ripe for
addressing various application challenges in general (Péron et al., 2017), and the problem of sustainable fishery
management in particular.

In this paper, we investigate the application POMDPs for developing sustainable fishery management tech-
niques. We review POMDP basics in Section 2 before introducing our POMDP models for sustainable fishery
management in Section 3. Importantly, these incorporate the biological dynamics of a classical population
model (Beverton and Holt, 1957). We present and discuss results of the simulation study in Section 4.

2 POMDPS

POMDPs provide a rigorous mathematical framework for modelling how an agent can make decisions in an
uncertain environment. Fig. 1 illustrates interactions between the agent and the environment in a POMDP. At
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Figure 1. A POMDP models how an agent interacts with an uncertain environment.

each time step t, the environment is assumed to be in a state st belonging to a set of all feasible states S. The 
state is not fully observable, and thus at time t, the agent maintains a belief bt on the state, which is a probability 
distribution on the feasible states. At time step t, the agent takes an action at from a set of feasible actions A, 
then the environment transits from current state st to a new state st+1 with the probability T (st+1 | st, at). The 
agent receives a reward rt = R(st, at), and an observation ot from a set of feasible observations O for the new 
state st+1 with probability Z(ot | st+1, at). When the decision horizon is infinite, the agent’s objective is to 
maximize the expected total discounted reward

V (b0) = E

( ∞∑
t=0

γtrt | b0

)
, (1)

where γ ∈ (0, 1) is a discount factor, and the expectation is taken with respect to the uncertainties in the initial
belief b0, the state transition dynamics T , and the observation dynamics Z.
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Given a current belief b, after the agent executes an action a and receives an observation o, the agent can
compute the updated belief b′ using

b′(s′) = Pr(s′ | a, o, b) = Z(o | s′, a)Pr(s′ | a, b)
Pr(o | a, b)

(2)

where Pr(s′ | a, b) =
∑
s∈S T (s

′ | s, a)b(s), and Pr(o | a, b) =
∑
s′∈S Z(o | s′, a)Pr(s′ | a, b).

In this paper, we shall use the DESPOT algorithm (Ye et al., 2017), a current state-of-the-art solver for
discrete-action discrete-observation POMDPs, to solve our proposed models.

3 POMDPS FOR SUSTAINABLE FISHERY MANAGEMENT

In this section, we describe our fishery management POMDP model. We use both the biomass m and the
proliferation rate ρ of the species as our state variable s = (m, ρ), and the catch as the observation variable
o. Both the biomass and the proliferation rate are often unknown or uncertain in practice. While fishery
management authorities may implement various control measures, such as catch limits and limits to fishing
vessel size, we focus on controlling the harvest rate as a preliminary study, that is, the target harvest rate is our
action variable a. Below, we provide details on how we choose S, O, A, T , Z and R. We first describe the
more natural setting with continuous states, actions and observations, and then describe how we can convert this
to the case of discrete states, actions and observations, so that we can leverage current efficient POMDP solvers.

3.1 Continuous State-Action, Discrete Time Models

We describe the transition dynamics, the observation model, and the reward function below.

Transition dynamics. A key building block of our methodology is the Beverton-Holt model (BHM), a classic
model used in modelling population growth of bio-species when there is no human intervention (Beverton and
Holt, 1957). In the case of fisheries, BHM dictates that the biomass mt+1 at time t+ 1 is related to the biomass
mt at time t by

mt+1 =
Kρmt

(ρ− 1)mt +K
, t = 0, 1, 2, . . . , (3)

where K ∈ R+ is known as the carrying capacity (i.e. maximum population that can be supported by the
ecosystem), and ρ ∈ R+ is the proliferation rate per generation. Often it is assumed that K and ρ are either
known or can be reasonably accurately estimated. In this paper, we only consider the case ρ ≥ 1. For the case
ρ < 1, the population decreases even without any harvest, and to keep the population sustainable, we would
actually need to consider “population boost” actions instead.

For POMDP modelling, we need to extend the above deterministic model to capture several sources of
uncertainties. Both the biomass mt and the proliferation rate ρt are usually not perfectly known for the state
st = (mt, ρt). The proliferation rate of a species is generally assumed to be a constant, and thus we initially
assume that ρ0 is first chosen from some initial distribution, but remains unchanged afterwards, that is, ρt = ρ
for some constant ρ for all t ≥ 0. For the population growth model, we extend the deterministic BHM to
take into account actions and the fact that the population growth may deviate slightly from that prescribed by
the BHM due to stochastic environmental factors. We thus extend the BHM to incorporate the multiplicative
harvest rate at ∈ [0, 1] and introduce the stochasticity to the following modified transition dynamics

mt+1 =
Kρ̃(1− at)mt

K + (ρ̃− 1)mt
, t = 0, 1, 2, . . . , (4)

where we now assume that ρ̃ = ρeξ, with ρ being the default constant proliferation rate, and ξ ∼ N(0, σ2
d)

being used to capture the uncertainty in population growth. Thus ρ̃ is now a random variable. This is derived
under the simplifying assumption that we allow the population to first grow under the BHM, and then harvest a
portion of at at the end of the time step t.

Observation model. We assume that the observation (i.e. the catch) Ct+1 = ot is related to the state
st+1 = (mt+1, ρt+1) and action at by

Ct+1 = ot(st+1, at) := min

(
atmt+1

1− at
eψt ,

mt+1

1− at

)
, (5)
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where at
1−atmt+1 is the amount of fish harvested assuming that we can achieve a harvest rate of exactly at, and

ψt ∼ N(0, σ2
o). The latter implies that the catch is assumed to be lognormally distributed, as is often done in

fishery science, (e.g., see (Linton and Bence, 2011) or Haddon (2011) p. 88).

Reward function. For the reward function, in the first instance, we use a reward function that is simply
proportional to the catch, that is,

R(st, at, st+1, ot) = cot, (6)

where c measures the net earning per unit catch, and is equal to the price per unit catch minus the cost per unit
catch. We can also use more sophisticated reward functions that explicitly take sustainability objectives into
account, by incorporating a penalty term when the biomass falls below an undesirable threshold and a cost for
switching actions. The resulting reward function has the form

R(st, at, st+1, ot) = cot + pen(mt+1, δp)− cs × |at − at+1|. (7)

Here pen(mt+1, δp) denotes a penalty incurred whenever the biomass mt+1 is below the target threshold δp. In
this paper, we use the following penalty:

pen(mt+1, δp) = −cpσ(mt+1 − δp) I(mt+1 < δp). (8)

where cp > 0 is a constant and σ(x) = 1/(1 + e−0.01x) is the sigmoid function. Note that a reward function of
the form R(st, at, at+1, st+1, ot) is computationally expensive to deal with, and also differs from the simple
reward function R(st, at) introduced in Section 2. However, it can be easily reduced to the same functional
form by taking expectations, as follows

R(st, at) = Est+1,ot|st,at [R(st, at, st+1, ot)] . (9)

These two reward functions appear to be very different, but any policy has the same expected total discounted
reward for both of them.

While Eq. (6) can take fuel cost and human labor cost into account, there are also costs associated with changing
from one harvest rate to another, which is not proportional to the size of catches. For example, to enforce
a change of a targeted harvest rate, the regulator may need to restrict the length of the fishing season or the
number of permits, and this may require subsidies. We can also easily incorporate such action-switching cost
into the reward function. We tried an additional cost term of the form−cs|at+1−at| where cs > 0 is a constant.
Naturally, this requires us to augment the state with a component storing the previous action, thereby increasing
computational burden even further.

3.2 Discretized Models

Next, we describe how we discretize the continuous state-action POMDP. We use notations with hats to indicate
that they are the discrete counterparts of the continuous POMDP. We first specify the set of discretized states,
actions and observations.

Under BHM, the biomass will never exceed the carrying capacity K. Thus we divide (0,K] into nm equal
intervals of length K/nm, and use the discretized state m̂i to denote the interval

(
(i−1)K
nm

, iKnm

]
for 1 ≤ i ≤

nm. For the default proliferation rate ρ, we choose nρ proliferation rates defining the fecundity set F = {
ρ̂1, . . . , ρ̂nρ} . For the actions, we choose na harvest rates â1, . . . , âna , where âi = 2i−1

2na
. For the observation,

we follow a similar discretization as that for the state space. Specifically, we have no discretized observations
ô1, . . . , ôno , where ôi :=

(
(i−1)K
no

, iKno

]
, for 1 ≤ i ≤ no.

Now we describe how we discretize the initial belief, the transition dynamics, the observation probabilities,
and the reward function. Our discretization method can be applied to general POMDPs with continuous states,
actions, and observations, and does not rely on the specifics of our continuous POMDP model for fishery
management.

For the initial belief, the probability of the discrete state ŝ = (m̂, ρ̂) is the probability that the continuous state
s = (m, ρ) is consistent with the ŝ, or formally

b̂0(ŝ) = Es∼b0
[
I(s ∈ ŝ)

]
, (10)
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where m ∼ b0 indicates that s follows the distribution b0 for the continuous biomass m. Here we use the
notation s ∈ ŝ to denote that s belongs to the discretized state ŝ, or specifically, m ∈ m̂ and ρ̂ ∈ F .

For the transition dynamics, the probability that ŝ = (m̂, ρ̂) transitions to ŝ′ = (m̂′, ρ̂′) is defined as the
probability that a continuous state s = (m, ρ) uniformly sampled from ŝ transitions to a state s = (m′, ρ′)
belonging to ŝ, upon executing action â. That is,

T̂ (ŝ, â, ŝ′) = Es∼U(ŝ),s′∼p(·|s,â) [I(s′ ∈ ŝ′)] , (11)

where U(ŝ) is the uniform distribution on the interval represented by ŝ, and p(s′ | s, â) is transition model for
the continuous case, and is determined by Eq. (4) under the assumption that ρ in ρ̃ = ρeξ remains constant.

For the observation model, we define

Ẑ(ô | ŝ′, â) = 1

D

∑
ŝ

Es∼U(ŝ),(s′,o)∼p(·,·|s,â) [I(s′ ∈ ŝ′, o ∈ ô)] , (12)

with the normalization constant D =
∑
ŝ Es∼U(ŝ),(s′,o)∼p(·,·|s,â) [I(s′ ∈ ŝ′)], and p(s′, o | s, a) is the probabil-

ity of transitioning to s′ and observing o after executing action a in state s in the continuous model.

The reward function R̂(ŝ, â) is defined as the expected reward obtained when action â is executed on a
continuous state s uniformly sampled from the discretized state ŝ, that is,

R̂(ŝ, â) = Es∼U(ŝ),(s′,o)∼p(·,·|s,â) [R(s, â, s
′, o)] . (13)

There are no closed formulae for the expectations in general. We use simple Monte Carlo simulations to
estimate the probability values, but we make a few improvements to efficiently compute the discretization.
First, it is inefficient to estimate each value in T̂ (ŝ, â, ·) separately. Instead, we estimate all values together by
drawing a large number of s and s′, and counting the frequencies that s′ falls into each discretized state, then
we normalize the frequencies to obtain the discretized transition probabilities for ŝ and â. We can use a similar
computation procedure to efficiently discretize the observation model as well. Second, while we presented
our discretization in a very generic way, some of the computation can be simplified in our case. In particular,
we can write down the discretized initial belief b̂0 in a closed form when we use a uniform distribution on the
biomass as the initial belief in the continuous model. In addition, for the observation model, if o depends on s′

only in the continuous model, then we can simplify the discretization procedure for the observation model so
that we only need to sample s′ from ŝ′, instead of sampling all the random variables s, s′ and o.

4 SIMULATION STUDY AND DISCUSSION

In the simulation study we experimented with a wide range of modelling choices concerning rewards, beliefs
and parameter values. We carefully chose the model parameters such that they are consistent with the values
that are determined from real data reported in the literature. Due to space constraints, we describe the outputs
of only a small sample of four experiments.

We first consider a basic model using the following initial belief and reward functions.

• B1: This scenario considers the case that we start with little knowledge about the species. The biomass m
is uniformly drawn from [0,K], and the proliferation rate ρ is equally likely to be one of the nρ values.

• R1: This is a simple profit model in which we simply take profit as proportional to the catch. The reward
function is defined by Eq. (6) with c = 1.

We also consider three variants obtained by changing either the initial belief of the reward functions.

• B2: This scenario considers the case where there is already a very good estimate of the biomass obtained
from extensive stock assessment studies. Initial biomass is assumed to be exactly equal to one half of the
carrying capacity.

• R2: This scenario considers the case when action switching costs are taken into account. The reward
function is given by Eq. (7) with c = 1, cs = 1500, cp = 0.

• R3: This scenario considers the case when incentives are given out to keep the biomass mass above a
threshold. The reward function is defined by Eq. (7) with c = 1, cs = 0, cp = 3000, δp = 6000.
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Model (R1, B1) (R2, B1) (R3, B1) (R1, B2)

Total discounted reward 35532.3 (118.7) 35078.1 (134.7) 21113.7 (166.6) 35794.6 (101.4)

Table 1. Average total discounted rewards obtained by DESPOT over 500 simulations for the four different 
models. The number in the bracket is the standard error.

For the discrete models, we use K = 10, 000, nm = 10, nρ = 3, no = 10, and na = 10. We chose the 3 
default proliferation rates as 5.8, 6.8 and 7.8, which are similar to the values used by Quinn II (2012). For the 
actions, a1 corresponds to 5% harvest rate, a2 to 15%, and so on.

To evaluate the total discounted value of a policy, we run each policy 500 times. Each run is over 10 time steps, 
and uses the discount factor of 0.95. For each time step DESPOT is given 5 seconds to search for an action.

Table 1 shows the total discounted rewards obtained by DESPOT on the above four models. Unsurprisingly, 
adding switching action costs and penalty costs decreases the discounted reward (see results for (R1, B1), (R2, 
B1) and (R3, B1)). The results also show if we start with more certainty in the initial belief, we can also achieve 
higher reward with more certainty, as seen by the slightly larger total discounted reward and slightly smaller 
standard error for (R1, B2) as compared to (R1, B1). Note that, the initial half carrying capacity assumption 
about the stock corresponds to maximum sustainable stock level in the classical logistic model. Since Eq. (3) is 
a form of discretization of the logistic model (e.g., see (Bohner and Warth, 2007)) this could, perhaps, be a 
reason why B2 leads to high performance.

4.1 Comparison of Adaptive Policy and Fixed Action Policies

Next, we compare the performance of the best adaptive policy produced by DESPOT under the base model (R1, 
B1) to fixed action policies which always harvest a fixed proportion of the biomass.
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Figure 2. Comparison between the adaptive and 
fixed action policies for the base model (R1, B1).

As expected, the optimal adaptive policy (blue curve) out-
performs all the fixed action policies and that gap is in-
creasing with the time horizon. Note that a greedy myopic
policy, like harvesting at a constant rate of 75% (purple
curve) performs well initially, but is not sustainable and
eventually performs poorly when the time horizon is large.
Similarly, a conservative policy, like harvesting at a con-
stant rate of 45% (orange curve) is not able to fully exploit
the resources available, and does not perform well either.
Interestingly, there is a moderate fixed action policy of
harvesting at 65% (red curve) that performs quite well as
compared to the optimal adaptive policy, but is still sub-
optimal. We expect that a fixed action policy will perform
less favourably when there is more uncertainty over factors
such as the proliferation rate of the species, and the envi-
ronmental factors such as temperature and water acidity.

4.2 Simplified Decision-Making Based on Expected
Biomass

In general, it is difficult to interpret an optimal POMDP policy. We conjectured that for our application, there is
a simple interpretation that the optimal policy is mainly making a decision based on the expected biomass at
each time step.

To investigate this hypothesis, we visualize a policy by plotting the proportions of different actions taken by
DESPOT for different expected biomass levels. These plots are shown in Fig. 3. The horizontal axis in the
plots is labelled with the level of the expected biomass, and we only show the proportions of actions which are
executed by DESPOT.

Fig. 3 (a) shows the plot for our basic model. We can see that when the expected biomass is small, some low
harvest rate actions are executed. As the expected biomass increases, the proportion of low harvest rate actions
gradually decreases, and the proportion of higher harvest rate actions increase. Eventually, the policy only uses
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Figure 3. Action proportions with different expected biomass

moderate harvest actions a6 and a7. In fact, the policy tries to maintain an equilibrium by executing actions a6 
and a7. This is also consistent with our finding that fixed action policies of a6 or a7 are actually very close to 
the optimal policy.

Fig. 3 (b) and Fig. 3 (c) show the plots for when the reward function includes action switching cost and penalty 
for low biomass, respectively. We observe similar trend as for the base model. In addition, we can see that 
including an action switching cost reduces the number of different actions selected, and the inclusion of low 
biomass penalty eliminated the more greedy harvest actions a6 and a7. Finally, Fig. 3 (d) shows that the fixed 
initial biomass belief at half the carrying capacity level resulted in a relatively more stable use of actions a6 and 
a7. Surprisingly, perhaps, the relative frequencies of the use of a6 versus a7 fluctuate with the increases in the 
expected biomass. We suspect that this is because in this case, a6 and a7 are generally very similar, or possibly 
both are optimal actions for certain beliefs.
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