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Abstract: Coral reefs are at risk due to climate change, specifically extreme ocean warming events. 
Understanding how water temperature varies vertically in the Great Barrier Reef (GBR) lagoon is important 
for understanding the potential threat to coral reef ecosystems. Predictive modelling can be used to assess 
extreme temperature high risk areas. This study had two aims: (1) to compare vertical temperature profiles 
predicted by the eReefs 1 km resolution (GBR1) hydrodynamic model with observed temperature collected by 
Slocum gliders on the Great Barrier Reef (GBR); (2) to create a simple statistical regression model to quickly 
predict subsurface temperature on the GBR during the wet season down to 40 m given sea surface temperature 
(SST). First, profiles of eReefs and glider temperature from different regions, seasons and time of day were 
compared using bias, Root Mean Square Error (RMSE) and Willmott’s Skill Score. Results show that 
temperature profiles predicted by the eReefs GBR1 hydrodynamic model are sufficiently accurate for the 
purpose of estimating impacts on corals. We then developed a new statistical model, Generalised Additive 
Modelling (GAM) was selected due to the nonlinear relationships between the subsurface temperatures and the 
explanatory variables. The GAM model built used five variables: SST, depth, time (days since October 1st) and 
location (as latitude and longitude) to predict temperature. The model produced RMSE values below 0.5°C 
and Pearson’s correlation coefficients between predicted and observed temperatures above 0.90. This study 
provides a simple and accurate statistical model allowing prediction of subsurface sea temperature from 
observed or modelled surface temperature.  
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1. INTRODUCTION 

The ocean is warming at a disproportionately higher rate than the atmosphere, and increasing ocean 
temperatures are a significant threat to marine ecosystems (IPCC, 2014). The severity of thermal impacts on 
ocean life is well researched (Hughes et al., 2017). A large proportion of studies primarily focus on sea surface 
temperature, whereas the study of subsurface temperature is still growing (Akbari et al., 2017). Improving the 
understanding of temperature changes within the photic zone of the ocean is important for understanding the 
risks to marine life, which is especially vital for sessile benthic organisms because they are unable to extend 
their range into cooler waters (Bates et al., 2014). Coral reefs are under significant threat from increasing sea 
temperatures as many coral species live currently close to their upper-temperature threshold (Castillo & Lima, 
2010; Hughes et al., 2017). Therefore, prolonged periods of increased temperatures are damaging to the coral 
reef ecosystem, due to mortality from thermal bleaching and a reduction in recovery.  

Marine heatwave (MHW) events, periods of prolonged, extremely warm ocean temperatures, have been 
increasing globally and are a growing field of research (Oliver et al., 2018). A consistent classification of 
MHWs was proposed in 2016, and in 2018, consistent naming and categorisation conventions were developed 
(Hobday et al., 2018). While MHW research is rapidly growing, understanding of how MHWs impact the 
subsurface waters is limited (Akbari et al., 2017). Short-term sea temperature extremes during the austral 
summer have resulted in mass coral bleaching in the Great Barrier Reef (GBR) (Hughes et al., 2017). The 
summers of 2015/16 and 2016/17 were the first consecutive mass bleaching events recorded on the Great 
Barrier Reef (Hughes et al., 2017). Increasing frequency of mass coral bleaching events are of considerable 
concern because it reduces the time for coral colonies to recover between events. The consecutive bleaching 
events showed that it is unlikely that corals can develop resilience to extreme temperature anomalies in a short 
time frame (Hughes et al., 2017). During the 2016/15 extreme ocean temperature event, corals down to 40 m 
were significantly bleached, resulting in a 6 percent mortality (Frade et al., 2018). In the central and northern 
sectors of the Great Barrier Reef, marine heatwaves had a local peak intensity in March 2016, with warm 
waters extending down to at least 60 m depth (Benthuysen, Oliver, Feng, & Marshall, 2018). This subsurface 
warming highlights the need for coral reef extreme temperature studies to consider the variability of vertical 
temperature and the depth that MHWs can extend.  

Temperature modelling for the surface and subsurface of the ocean are improving due to increasing data 
availability and computational power (Akbari et al., 2017). There are a wide variety of modelling methods 
available from simple predictive statistics to extensive machine learning. Modelling of subsurface temperature 
has added challenges because of the highly variable, three-dimensional nature of the water column (Akbari et 
al., 2017). Subsurface waters are influenced by internal tides and upwelling events which may go undetected 
at the surface (Benthuysen, Tonin, Brinkman, Herzfeld, & Steinberg, 2016). Temperatures between the surface 
and upper five metres of the water column can vary by several degrees (Castillo & Lima, 2010). The CSIRO 
eReefs hydrodynamic model was built to predict water conditions and processes in the GBR lagoon. The eReefs 
model can simulate conditions in hindcast, near-real-time and future scenarios (Schiller, Herzfeld, Brinkman, 
Rizwi, & Andrewartha, 2015). The eReefs model is computationally expensive and runs a few days behind the 
present, and hence a rapid and simple predictive statistical model would be of high value in monitoring marine 
heatwave events.  

The aims of this research are (1) to evaluate the performance of the non-data assimilating version of the eReefs 
1km hydrodynamic model (GBR1) by comparing the vertical temperature profiles predicted by the model with 
observed temperature measurements collected by Slocum gliders along the Great Barrier Reef. In addition, this 
study aims to (2) create a simpler and faster statistical model for predicting the subsurface temperature within 
the upper 40 m of the water column to aid coral bleaching predictions below the surface over the GBR.  

2. DATA SOURCE AND METHODS 

2.1. eReefs hydrodynamic model  

The eReefs project is a collaboration between the CSIRO, Australian Institute of Marine Science and the 
Bureau of Meteorology (https://ereefs.info). eReefs is a suite of models designed to predict the hydrodynamic, 
biogeochemical, and sediment transport processes of the GBR. The CSIRO eReefs hydrodynamic model is 
built from the Sparse Hydrodynamic Ocean Code (SHOC; Herzfeld 2006(12)), using a curvilinear orthogonal 
grid. There are two resolutions of the hydrodynamic model covering the Great Barrier Reef Marine Park 

632



Quinlan et al., Predicting subsurface water temperature from sea surface temperature in the Great Barrier Reef 

 
 

Authority management area. The first is a regional model on a 4 km grid (GBR4) which extends into the Coral 
Sea. The second is a higher resolution 1 km grid (GBR1) over a slightly smaller area (Figure 1). The eReefs 
models have 48 depth layers down to 4000 m depth, with increased resolution near the surface and hourly 
model output.  The hydrodynamic model chosen for evaluation was the non-data assimilating GBR1 model, 
which has predictive data available from December 2014 to the present. The ouput of GBR1 was accessed 
through the “ereefs” package for R developed by Dr Barbara Robson (https://github.com/AIMS/ereefs). The 
raw output files are very large and the “ereefs” package allows the user to selectively download selected subsets 
of the output (eReefs model output: http://dapds00.nci.org.au/thredds/catalogs/fx3/catalog.html). 

2.2. Slocum glider observations  

The observational data used for the model 
evaluation was from the Slocum glider 
temperature measurements, collected through 
the Integrated Marine Observing System 
(IMOS). The Slocum gliders travelled along a 
path in a vertical sawtooth pattern. The 
Slocum gliders collected data every two 
seconds between the surface and 200 m depth. 
Glider missions were conducted from 2015 to 
2018 and were classified as north 
(equatorward of 16°S), central (16°S-20°S) or 
south (poleward of 20°S) and as wet (October 
to April) or dry (May to September) seasons 
(Figure 1). 

2.3. Evaluation of the GBR1 model 
temperature predictions 

All processing and analysis were completed in 
RStudio with R x64 3.5.2 (RStudio Team 
2015). The eReefs models and glider 
observations were matched in time and space 
and converted to the same data formats. There 
were 60 profiles selected, from the three 
regions and two seasons, and five days were 

sampled twice per day. The time of temperature 
profile observations needed to be the same as 
the timing of model predictions, as the eReefs 
model output was available on the hour. Once 
the data was matched temporally and spatially, 
the finely vertically sampled glider temperature 

profiles were averaged for each eReefs depth layer. The GBR1 model and glider observations were compared 
statistically. For each profile, the bias (difference), Root Mean Square Error (RMSE) and Willmott’s Skill 
Score (Willmott, 1981) was calculated.  

2.4. Predictive model development 

Two predictive statistical analyses were compared: the Generalised Linear Model (GLM) and the Generalised 
Additive Model (GAM). From the GBR1 eReefs temperature output across four extended austral summer 
periods (October 1st to April 30th) between 2015 and 2019, over ten thousand randomly selected geolocations 
were used to develop the models. Subsurface temperatures from 8 depth layers reaching 40 m were obtained. 
Potential predictor variables included SST, location (latitude and longitude as an interaction term), time of year 
(days since 1 October), total water column depth and wind velocity. GLM and GAM are extensions of linear 
regression. GLM linear assumptions are more flexible than traditional linear regression due to incorporation of 
transformations, while GAM uses smoothing functions, which can be even more flexible. The packages used 
in R used were bigglm and mgcv, and for the GAM development and thin plate splines were used for smoothing 
the nonlinear factors. Best subset selection and random forest were used to explore the best model terms 
quantitatively.  The summers starting in 2015 and 2016 were used to build the model through cross-validation. 

-10° 

-20° 

-30° 

140° 150° 

Figure 1. Map of the Queensland eastern coast, displaying 
the three areas that glider missions existed for the wet and 
dry seasons. The outline shows the coverage of the GBR1 

model (modified from Google Maps). 
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The extensive size of the data was computationally expensive for R, so the data was subset into smaller 
workable sizes by randomly selecting subsets of the 1000 geolocations. The different models were tested 
against the full datasets for summers starting in 2017 and 2018. Both years were used for model testing, as 
early 2019 was subject to an uncharacteristically large monsoon rainfall event. The models were assessed by 
calculating RMSE values and Pearson correlation coefficients. The bias between the predicted and original 
subsurface temperatures was mapped over the entire dataset to explore patterns of deviations along the GBR. 

2.5. RESULTS AND DISCUSSION  

2.6. Evaluation of the GBR1 model temperature predictions 

The temperature outputs from the CSIRO eReefs hydrodynamic model are sufficient for predicting single 
temperature profiles on the GBR. The deviation between the eReefs GBR1 hydrodynamic model profiles and 
glider observed profiles increased with depth (Figure 2a). The greatest average difference between the 
predicted and observed temperatures was in the north region, where below 10 m the model is underestimating 
the temperature by 2°C (Figure 2a). The north also had the largest differences between the surface and 
subsequent depths, indicating stronger thermal stratification. In the south region, where the difference between 
the surface and subsurface is smaller than the north, the model predicted slightly warmer temperatures (Figure 
2a). The glider missions in the north were generally shallower than in the central and southern region. The 
depth of the mixed layer depends on several factors, thus complicating attempted predictions. External 
influences, such as terrestrial runoff and river plumes, wind, and, air-sea heat flux contribute to the stratification 
(Steinberg, 2007). In the GBR, stratification is also influenced by upwelling (e.g. Benthuysen et al. 2016), 
mixing around reefs, tidal currents, and low-frequency currents and eddies (Weeks, Bakun, Steinberg, 
Brinkman, & Hoegh-Guldberg, 2010).   

The bias between the predicted and observed temperatures, calculated for each depth layer are within ±3°C 
(Figure 2b). As expected, the dry season is less vertically variable than the wet season (Figure 2b). The GBR 
has high interannual variability. The weather during the dry season is often stable between years; in contrast, 
the wet season is a time of weather extremes, including high temperatures and monsoonal rainfall (Steinberg, 
2007). The variability of the seasons and thus, the variability in the accuracy of prediction is represented in the 
bias.  Above 60 m depth, the average bias is within 1°C, except for the upper 5 m in the northern region during 
the wet season, where the model is predicting warmer temperatures than observed (Figure 2b). Below 60 m, 
the central and south regions have relationships between bias and depth in opposite directions (Figure 2b). The 
predicted temperature in the south is warmer below 60 m, while in the central region, the predicted temperature 
is cooler at these depths (Figure 2b). Despite the greater bias occurring below 60 m, there is confidence for the 

Figure 2. a) Comparison of the eReefs (open) GBR1 and Slocum glider (filled) observed temperature difference 
between the top (2.35 m) depth layer and each depth below for the wet season over the Great Barrier Reef’s 
North, Central and South regions (n=30 profiles). b) The boxplot of the bias (difference) between the eReefs 

GBR1 and Slocum glider temperature profiles in the Great Barrier Reef’s North, Central and South regions, the 
wet (open) and dry (filled) seasons. Negative values correspond with a cooler model, positive values with a 

warmer model and the red dashed line indicates the zero-temperature bias (n=60 profiles). The box plots show 
the median as the middle line within the box, the horizontal lines represent the minimum and maximum of the 

data, and the dots show data points outside the box (first and third quantile) by 1.5 times. 

a b 
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upper 40 m (Figure 2b). Accurate temperature predictions within the top 40 m are important because this is an 
area of ecological importance for reef-building corals (Frade et al., 2018).  Therefore, the larger error below 
this upper mesophotic zone is not applicable for the majority of coral reefs in the GBR.  

The RMSE of the model predictions are within 0.5°C when 
calculated for each region and season, suggesting good 
agreement between the predicted and observed temperature 
values (Table 1). This result is consistent with findings 
from a previous evaluation of the SST predictions from the 
4 km eReefs hydrodynamic model (Schiller et al., 2015). 
Schiller et al. (2015) found that between 2011 and 2013, 
areas inshore along the shelf had slightly higher RMSE 
than areas further off the shelf. Also, there were areas in the 
southern (poleward of 20°S) and northern (equatorward of 
10°S) regions that had RMSE closer to 1°C. The present 
study also found that the temperature profiles had a slightly 
higher RMSE in the South (Table 1). The southern area 
with the higher RMSE is between the Swains and Capricorn 
Bunker Reefs (23°S) and is the location of the episodic 
Capricorn Eddy and cool bottom water intrusions. The eddy 

and bottom water intrusions decouple the relationship between SST and subsurface temperatures during the 
summer months. These processes add to the complexity of the subsurface waters within this southern area and 
contribute to the increased RMSE and bias (Weeks et al., 2010). The Willmott's Skill Score is above 0.8 for all 
regions and seasons (Table 1). This agreement supports that the eReefs GBR1 model is adequately predicting 
individual temperature profiles.  

2.7. Statistical model development 

The comparisons of glider observations and the eReefs GBR1 model indicate that overall the eReefs model 
can sufficiently predict the temperature profiles over the GBR’s continental shelf. The eReefs temperature 
output was selected to build predictive models to estimate the subsurface temperature down to 40 m. eReefs 
was selected over observational datasets because the model can adequately predict the subsurface temperature 
and provide a much larger dataset, covering the entire GBR for a period of several years. The model selected 
is a GAM, including SST, depth, time latitude, and longitude. These model variables were selected based on a 
best subset selection and random forest and all the remaining explanatory factors were required for predicting 
temperature at a given location and time. The wind velocity and total water column depth were removed as 
predictors as they did not improve the model’s error or explained variance. GAM was chosen over GLM 
because of the nonlinear relationship between the subsurface temperature and time, location (interaction term 
between latitude and longitude). The final model produced overall RMSE within 0.5°C (Table 2). The 
subsurface temperatures during the summer of 2017/8 were slightly more predictable than 2018/19 based on 
the developed model (Table 2).  

Overall, the difference between the predicted and actual values was 
small along the GBR. However, there were areas and times of the year 
where the deviations were large. For example, during November 2018, 
there were errors of up to +3°C (Figure 3b). The largest deviations are 
found within the deeper layers which suggest some decoupling from 
the SST (Figure 3b). The central coast and far northern GBR, where 
the SST is warmer than the surrounding waters, are areas of increased 
warm bias below 18 m (Figure 3). The overly warm prediction suggests 
that there may upwelling occurring, increasing the stratification 
gradient and decoupling the SST from the subsurface waters 
(Benthuysen et al., 2016; Steinberg, 2007). The model developed does 
not have a variable to describe accurately the temperature variability 
due to upwelling events. While it is important to improve this aspect, 

robust decisions can still be made by considering the areas of most concern. Also, the November 2018 example 
considered here is the most extreme deviation found (Figure 3b) and there is confidence in the overall 
predictions during the other time periods.  Accurate prediction of subsurface temperatures on the GBR is vital 

Region  Season  RMSE (°C) WSS  
North  Dry  0.134  0.974  

Wet  0.056  0.914  

Central  Dry  0.004  0.961  
Wet  0.384  0.978  

South  Dry  0.472  0.851  
Wet  0.159  0.881  

Year  RMSE Corr 
2017/18 0.346 0.953 
2018/19 0.404 0.940 

Table 1. The Root Mean Square Error (RMSE) 
and Willmott’s Skill Score (WSS) calculated 
for overall temperature profile agreement 
between the eReefs 1 km hydrodynamic model 
(GBR1) and Slocum glider observations in the 
GBR North, Central and South regions and the 
wet and dry seasons. (n=60 profiles). 

Table 2. The overall Root Mean 
Square Error (RMSE) and 
Pearson’s correlation coefficient 
(Corr) for the Generalised Additive 
Model developed to predict the 
subsurface temperature to 40 m 
depth. 
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for improving the estimation of coral bleaching risk. The ability to use easily measured surface predictors 
makes it practical to use the model in near real time (Su, Li, & Yan, 2018). This work demonstrates that in the 
case of the GBR continental shelf, subsurface temperature can be predicted from sea surface proxies.  

2.8. CONCLUSION  

The comparison of vertical temperatures from the eReefs GBR1 hydrodynamic model and Slocum glider 
measurements suggests that the eReefs model is predicting well the general trends of subsurface temperature 
variability at regional scales. The eReefs evaluation results affirm the confidence in eReefs as a regional-scale 
monitoring tool for the GBR. The ability to monitor subsurface temperature with effective and high-resolution 
models will help identify changes to subsurface temperature. The model developed could help identify coral 
reef locations at high risk to thermal stress, and therefore, identify locations where to focus monitoring 
efforts. By helping to identify coral reefs of concern, the use of this model could contribute to further 
studies aimed at understanding the impact of temperature on corals at different depths on the GBR. 
The simple GAM developed in this study can rapidly and reasonably accurately predict the subsurface 
temperature in the GBR lagoon down to 40 m from surface variables. Combining the models created with 
existing SST forecasting and remote observation methods to predict the underlying subsurface temperatures 
could improve the accuracy and reliability of coral reef bleaching risk. The models could contribute to the 
understanding of coral bleaching risk at depth, which could aid managers in creating proactive management 
strategies. 

 

(°E) 

(°E) 

Figure 3. Map of the Great Barrier Reef during November 2018 for a) sea surface temperature from 
eReefs 1 km hydrodynamic model temperature output. b) The difference (error) between the GAM 

model created and the eReefs temperatures at each depth layer. A positive value indicates warm 
predictions, while a cool prediction is indicated by a negative value (n=10,000 geolocations). 
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