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Abstract: Driven by declining costs and the Large-scale Renewable Energy Target (LRET) in particular in 
Australia, the installation of utility-scale solar photovoltaic power is rapidly increasing in the recent few years.  
Consequently, accurate solar power forecasts are urgently needed to efficiently and economically integrate 
variable solar power generation into the inter-connected power system and to ensure national energy security.  
In addition to a central point power forecast, the associated uncertainty information is more and more being 
regarded useful to inform critical decision making such as planning for contingency events. As such, 
probabilistic forecasting of solar irradiance or power is receiving more and more attention from solar energy 
researchers. 

Most probabilistic methods forecast solar irradiance or power at specific time and location independently 
without explicitly treating time-space dependency of scattered solar power generators.  This is fine as far as 
individual solar power generators and independent time periods are concerned.  However, under scenarios 
where the aggregated power in time and space is most concerned such as supply-demand balancing for inter-
connected power systems, the time-space correlation of solar power generation will likely play a role and thus 
an explicit treatment of its time-space dependency becomes important.  In this study, we investigate the power 
output of four adjacent utility-scale solar farms which are connected to the National Electricity Market using 
gaussian copula.  We have quantitatively demonstrated the benefit of retaining the time-space dependency in 
probabilistic forecasting of solar power. 
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1. INTRODUCTION 

The conventional way to forecast solar energy generation is to provide a single value for a specific time and a 
specific location.  However, deterministic forecasts will never be perfect because of the complexity of solar 
irradiance and power modelling.  Therefore, the solar research community and the solar industry are becoming 
increasingly aware of the importance of the uncertainty information of solar forecasts for critical decision 
making, in particular given the trend of increasing solar energy penetration in the energy mix of most countries 
over the world.  Probabilistic energy forecasting is also important to power grid operators.  In Australia, the 
Australian Energy Market Operator (AEMO) has adopted probabilistic energy forecasting in the form of 
probability of exceedance (POE) (e.g. 10% POE and 90% POE) and assesses its forecasting models on an 
annual basis (AEMO, 2018a).  In addition, the AEMO needs the information of the probability distribution of 
the supply-demand balance in the National Electricity Market (NEM) to quantify its reliability (AEMO, 
2018b). 

Probabilistic solar forecast are normally supplied by technologies such as quantile regression (e.g. Lauret et 
al., 2017) or analogy to historical scenarios (e.g. Huang and Perry, 2016).  Depending on forecasting horizon, 
explanatory information could include historical observed values, relevant meteorological forecasts from 
numerical weather prediction (NWP) models (e.g. surface solar irradiance and ambient air temperature) and 
other useful inputs from measurement instruments such as sky imaging cameras or satellites.  In a recent notice 
sent to its registered users, the Bureau of Meteorology (BOM) has announced that their new ensemble NWP 
models will be able to run operationally in 2020, providing probabilistic weather forecasts over Australia.  
Given the strong reliance of energy demand and renewable energy generation on weather conditions, this will 
provide rich information for probabilistic energy forecasting in Australia. However, it is still relatively rare for 
solar forecasters to explicitly treat and examine time-space dependency of solar power generation of spatially 
distributed solar generators. 

Nevertheless, there are a few recent works which used copula to investigate the time-space correlation structure 
of solar irradiance or power (Golestaneh et al., 2016; Golestaneh and Gooi, 2017; Munkhammar and Widén, 
2017; Munkhammar et al., 2017).  In this study, we examine time-space dependency of solar power generation 
time series from four adjacent NEM-connected solar farms and have quantitatively shown the benefit by 
explicitly incorporating them in probabilistic forecasting models. 

2. BACKGROUND 

2.1. Selected solar farms 

The majority of the solar farms which are currently operational and 
connected to the NEM were commissioned in 2018 or 2019.  Many of 
them are still undergoing system testing.  And consequently, they are 
running only at their partial capacity and/or their output power is not 
stable at monthly and longer scale.  For the purpose of this study, we 
wish to select solar farms which are able to generate power stably and 
are in geographic proximity. Finally, four solar farms in the NSW and 
the ACT are identified (see Table 1 and Figure 1).  One year (08/2018-
07/2019) of 5-min power data are obtained for all four solar farms from 
the AEMO’s online archive (AEMO, 2019), which are then upscaled 
to hourly to match the temporal resolution of forecasts by the ACCESS 
regional model. 

2.2. ACCESS regional model 

It has been shown that the ACCESS model exhibits excellent 
performance in solar irradiance forecasting, particularly over 
southeastern Australia (Huang et al., 2018).  Hence, in this study we 
use forecasts of eight surface variables produced by the ACCESS 
regional (ACCESS-R) model to predict solar power generation 
(Bureau of Meteorology, 2016; Huang et al., 2018).  The eight variables are hourly averages of global 

Table 1. Details of selected solar farms 
Name AEMO ID Capacity (MWac) Technology Operation since Gap filling (%) 
Moree Solar Farm MOREESF1 56 Single-axis tracking 04/2016 14 
Nyngan Solar Plant NYNGAN1 102 Fixed 06/2015 10 
Parkes Solar Farm PARSF1 50.5 Single-axis tracking 05/2018 13 
Royalla Solar Farm ROYALLA1 20 Fixed 09/2014 4 

  

 
Figure 1. Location of the four 
selected solar farms in the map of 
southeastern coasts.  They spread 
approximately 6 degrees in latitude 
and 3 degrees in longitude. 
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horizontal irradiance (GHI, av_swsfcdown), direct horizontal irradiance (DHI, av_sfc_sw_dir), specific 
humidity (av_qsair_scrn), mean sea level pressure (av_mslp), air temperature (av_temp_scrn), total cloud 
cover (av_ttld), and zonal and meridional 10m wind speed (av_uwnd10m and av_vwnd10m), respectively.  
Note that all the timestamps are at the end of the hourly averaging period and all variables are extracted from 
the gird points nearest to the corresponding solar farms. We use forecasts initiated at UTC Hour 18 (i.e., 
Australian Eastern Standard Time or AEST Hour 4 next day) each day out to 24h ahead to compose 
continuous time series for one year (08/2018-07/2019). 

2.3. Quantile regression 

Historically, quantile regression has been widely used in statistics and econometrics (see Koenker, 2005).  In 
recent years, it has been proliferating in addressing energy problems and become almost a standard approach 
for probabilistic solar irradiance and power forecasting (e.g. Bacher et al., 2009; Lauret et al., 2017).  In this 
study, we use linear quantile regression to produce probabilistic solar power forecasts for the four selected 
solar farms from the eight surface meteorological variables by ACCESS-R.  A separate linear quantile 
regression model is built for each solar farm and each hour from 7am to 5pm in AEST, totaling 40 quantile 
regression models.  To minimize seasonal effects, every other day beginning with 01/Aug/2018 is used for 
training and the rest (i.e. beginning with 02/Aug/2018) for testing.  Thus, 183 days are used for training and 
182 days for testing. 

2.4. Quantile score 

We use the pinball loss function as the measure of quantile forecasts (Hong et al., 2016; Huang and Perry, 
2016), which is comparable to the mean absolute error (MAE) for deterministic forecasting.  For a quantile 
forecast 𝑞" with 𝛼 ∈ (0,1) as the target quantile, the corresponding meausre L for a quantile forecast 𝑞" defined 
by the pinball loss function is: 

𝐿(𝑞", 𝑦) = -
(1 − 𝛼)(𝑞" − 𝑦), if	𝑦 < 	𝑞"
𝛼(𝑦 − 𝑞"),											if	𝑦 ≥ 𝑞"	,

 

where y is the observation truth.  In this study, we mainly use quantile score (QS) in an integrated and 
normalized form, i.e. QS = ∑ 𝐿(𝑞", 𝑦)/𝐴"78.8:,8.;8,…,8.=: , where A is the nameplate capacity (MWac) of a solar 
farm or the aggregated nameplate capacity of multiple solar farms depending on the target of forecasts.  By 
definition, QS is nonnegative and a zero QS implies a perfect forecast.  Similar to relative MAE, QS increases 
with deteriorating performance. 

3. GAUSSIAN COPULA 

Even subject to space limit, we feel that it is necessary to briefly present some background about copula here 
since its use in solar irradiance and power forecasting is not very popular to date.  The readers can refer to, for 
example, Golestaneh et al. (2016) and Munkhammar et al. (2017), for more details. 

Let us consider a solar PV power generation 𝑃?,@ for a given hour of day h and a given location z.  Its cumulative 
distribution function (CDF) can be empirically represented by its quantile forecasts 𝑞" as: 

𝐹?,@(𝑞") = 𝛼. 

Classical probabilistic theory can be used to obtain 𝐹?,@ independently for h and z from selected explanatory 
information (e.g. modelling NWP forecasts via quantile regression here in this study).  To further model the 
time-space dependency contained in dispersed solar power generation connected in the NEM, gaussian 
copula needs to be introduced.  According to Sklar’s theorem (Sklar, 1959), the multivariate CDF of solar 
power generation in time and space 𝐅 can be linked to their marginal distribution 𝐹?,@ via a gaussian copula 
C, i.e., 

𝐅C𝑃D,EF, 𝑃=,EF, … , 𝑃;G,HIJ, 𝑃;K,HIJL = 𝐂(𝐹D,EF, 𝐹=,EF, … , 𝐹;G,HIJ, 𝐹;K,HIJ). 

Here Mr is short for Moree and Ryl for Royalla.  Note that the multivariate distribution can be composed 
similarly in time or space only, as will be seen in Section 4.3.  However, the formulas written here are for both 
time and space.  The gaussian copula is a multivariate normal distribution with a predetermined correlation 
structure, i.e., 

𝐂C𝑈D,EF, 𝑈=,EF, … , 𝑈;G,HIJ, 𝑈;K,HIJL = 𝐅𝚺(𝑁Q;(𝑈D,EF), 𝑁Q;(𝑈D,EF), … ,𝑁Q;(𝑈;G,HIJ), 𝑁Q;(𝑈;K,HIJ)), 

where 𝑈D,EF, 𝑈=,EF, … , 𝑈;G,HIJ, 𝑈;K,HIJ are uniformly distributed random variables transformed from the CDF 
of the original solar PV power generation, 𝑁Q; is the inverse CDF of a standard univariate normal 
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distribution and 𝐅𝚺 is the joint CDF of multivariate normal distribution with zero mean values and a feed-in 
correlation matrix 𝚺. 

As can be seen above, the input information needed for gaussian copula is the correlation matrix 𝚺 and all the 
marginal distribution 𝐹D,EF, 𝐹=,EF, … , 𝐹;G,HIJ, 𝐹;K,HIJ.  𝚺 can be calculated from the observed solar power 
values after they are transformed to the normally distributed domain.  In this study the marginal CDF is 
empirically obtained through forecasts by quantile regression.  Also note that all the input information is 
produced by data in the 183 training days only. 

Finally, the transformation between an arbitrary marginal distribution and a uniform distribution is given by: 

𝑈?,@ = 𝐹?,@C𝑃?,@L or 𝑃?,@ = 𝐹Q;?,@C𝑈?,@L. 

4. RESULTS 

4.1. Pre-processing solar power data 

The AEMO-published 5 min power generation 
data needs to be pre-processed before being used 
for probabilistic modelling.  Three factors are 
considered during this step: (1) the power time 
series are averaged to an hourly resolution to 
match the resolution of the weather forecasts by 
ACCESS-R; (2) small fraction of missing data 
can be filled with meaningful values; (3) all the 

four solar farms studied here clip their power generation 
to some extent, which could be due to  capacity limit of 
their AC inverters or other practical reasons.  Firstly, we 
exclude the power values exceeding or being close to 
their corresponding AC capacity by using thresholds 
slightly smaller than their capacity.  By visually 
examining the probability density functions of power 
values, the thresholds are set at 53, 100, 50, 19 MW, 
respectively.  Then, power time series are averaged to 
an hourly resolution.  Quantile regression is used for 
each solar farm to construct a prediction model of 
median.  All meaningful data between 8am and 5pm are 
used for training and then missing and excluded data are 
gap filled by the median model.  Throughout this 
process, the percentages of gap filling are 14% for 
Moree, 10% for Nyngan, 13% for Parkes and 4% for 
Royalla, respectively.  This process is illustrated in 
Figure 2 using Nyngan solar farm as an example. 

 
Figure 2. Illustration of preprocessing of Nyngan power 
data: (top) power generation at noon for a year with all 
power above the clipping line (100 MWac) gap-filled; 
(bottom) original power vs. adjusted power for seven 
summer days.   

 
Figure 3. (top 4) Probabilistic forecasts of four 
solar farms on 28/07/2019 by quantile regression.  
The bands of prediction intervals are bound 
sequentially by the decile forecasts (i.e. q10, q20 

,…, q90 upward). (bottom) averaged intra-day 
patterns of quantile scores of four solar farms. 
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4.2. Independent quantile regression 

With the missing and clipped power data filled, we are able to demonstrate the performance of quantile 
regression in Figure 3.    There is a clear difference in the intra-day patterns between solar farms deploying 
fixed PV panels (i.e. Nyngan and Royalla) and deploying single-axis tracking PV panels (i.e. Moree and 
Parkes). The power generation pattern of solar farms using fixed PV panels resembles that of global horizontal 
irradiance whilst solar farms using single-axis tracking PV panels have a long plateau of power generation 
approximately during 10am to 4pm.  As shown in Figure 3, quantile regression is able to forecast power 
generation reasonably well from ACCESS-R forecasts with its median forecast close to the actual generation 
most of the time.  However, large deviations exist such as Parkes solar farm during 1pm-2pm, which may be 
due to forecasting error of NWP or internal contingency events of the solar farms. Day-averaged quantile score 
is then calculated for each solar farm and each hour of day (Figure 3).  The difference between the two 
technologies is reflected in the quantile score as well.  Solar farms fixing PV panels have higher forecasting 
errors around noon whilst solar farms tracking the sun from east to west actually forecast the noon period more 
accurately than early morning and late afternoon.  Nyngan solar farm has the lowest QS overall because its 
inland location favours a clear-sky weather which is generally easier for ACCESS-R to forecast (see Huang et 
al., 2018).  In terms of reading QS, we note that it is difficult to associate the value of QS with the quality or 
certainty of probabilistic forecasts mainly because of a lack of reported QS values for similar studies in 
literature.  However, it makes sense to use QS of the forecasts by quantile regression as a benchmark since it’s 
becoming increasingly popular in probabilistic solar forecasting. 

 

 
Figure 4. (top left 4) Quantile/decile forecasts (i.e. q10, q20 ,…, q90 similarly as in Figure 3) of solar power 
generation for each hour of day, which are aggregated over 4 solar farms and 182 testing days and then 
normalized by the aggregated capacity (228.5 MWac).  They are produced by independent quantile 
regression (QR), gaussian copula in time (CT), gaussian copula in space (CS) and gaussian copula in time 
and space (CTS), respectively. (bottom left) The intra-day patterns of the corresponding quantile scores of the 
four approaches calculated for testing period only. (top right 4) Quantile/decile forecasts of solar power 
generation for each month, which are aggregated over 4 solar farms and 182 testing days in each month and 
then normalized by the aggregated capacity.  Again, they are produced by QR, CT, CS and CTS, 
respectively. (bottom right) The seasonal patterns of the corresponding quantile scores of the four approaches 
calculated for testing period only. 
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4.3. Time-space dependency 

We now employ the gaussian copula introduced in Section 3 to generate scenarios of probabilistic solar power 
forecasts.  More specifically, the procedure of scenario generation can be divided into three steps: (1) all the 
marginal distributions 𝐹?,@ are obtained from independent quantile regression (cf. Section 4.2); (2) the 
correlation matrix 𝚺 is derived from observed solar power in the training period, thus formulating the gaussian 
copula 𝐂 as 𝐅𝚺; (3) scenarios are generated by 𝐂, which are then calibrated to conform to 𝐹?,@ for each time h 
and location z.  As mentioned, it is possible to construct a gaussian copula in time or in space only or in both 
time and space.  Here we generate 100 scenarios for each time and location incorporating correlation structure 
in time only (CT), in space only (CS) and in both time and space (CTS), respectively.  The time-space structure 
of solar power generation is best revealed by aggregation of probabilistic solar power forecasts in time and 
space, which are calculated from the 100 scenarios.  This is because that copula uses the marginal probability 
distribution functions (PDFs) produced by quantile regression as input so that the forecasts given by quantile 
regression and by copula at a specific time and a specific location would be similar in a probabilistic sense. 

In Figure 4, we examine forecasts of such aggregations against hour of day and against month, respectively.  It 
is shown that copulas are generally able to forecast the aggregated power more accurately than quantile 
regression evidenced by narrower prediction intervals which still encompasses the actual power generation.  
This can be further quantified by comparing their corresponding quantile scores.  It is interesting to observe 
that the quantile scores of CT and CS are often lower than those of CTS, indicating better performance, whilst 
all copula forecasts outperform the quantile regression forecasts.  However, it appears that the performance of 
CTS is generally more robust than CT and CS alone (e.g. 11/2018 and 04/2019 for the forecasts of monthly 
power aggregation).  This may be because that less constraint on the correlation of power forecasts in time-
space may improve the performance of power forecasts in general but does not do well in terms of forecasting 
anomalies. 

5. DISCUSSION AND CONCLUSION 

In this study, we managed to explicitly incorporate the time-space correlation structure of solar power 
generation into probabilistic forecasts.  We firstly used classic quantile regression techniques to obtain these 
independent probabilistic forecasts from intra-day weather forecasts by the BOM’s ACCESS-R model.  The 
difference between fixed PV panel technology and single-axis tracking technology was revealed in terms of 
intra-day pattern of probabilistic solar forecasting errors.  And then, we employ gaussian copula to generate 
scenarios of solar forecasts which conform to both the probabilistic structures of the independent forecasts as 
well as the time-space correlation structure of actual power generation.  We note some limits and potential 
improvements of this work as follows. 

• More physical approaches can be employed to improve the irradiance-to-power modelling.  In particular, 
the power forecasts of the single-axis trackers have significant errors during early morning and late 
afternoon, which can definitely be improved by a realistic model for plane-of-array irradiance.  However, 
this does not affect the main conclusion of this work on the role of time-space dependency. 

• Given that the 5 min resolution is the most important time frame for the participants of the NEM and the 
availability of the 5 min power generation time series, it is possible to extend this work at hourly resolution 
to 5 min. 

• It is possible to improve the pre-processing step of solar farm data by more realistically identifying the 
reasons of anomalies (e.g. by communicating with the solar farms investigated) and modelling the 
behaviours of their AC inverters.  Longer (e.g. multi-years) power data for training and testing is always 
desired. 

• The time-space correlation structure may be influenced by seasonal patterns to some extent.  Hence, by 
removing these patterns from the observed power prior to calculating and passing the correlation matrix 
to copula may achieve higher accuracy than demonstrated in this work. 

• Although gaussian copula is among the most popular ones, it may worth trying and comparing with other 
types of copulas for probabilistic solar forecasting, such as R-Vine copula investigated by Golestaneh and 
Gooi (2017). 

To conclude, we quantified the performance of probabilistic solar forecasting by the so-called pinball loss 
function and are able to show the superiority of explicitly retaining this time-space dependency relative to the 
approach of producing probabilistic forecasts independently.  In addition to central power grid operators such 
as the AEMO, this work is potentially useful to any party who is interested in aggregated power forecasting in 
time and space such as local distribution network service providers (DNSPs) and companies who own multiple 
distributed renewable generators. 
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