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Abstract: We investigate the daily share prices of Nikkei 225 indexes to identify jump times using a jump
diffusion model, which consists of the Black-Scholes model with stochastic volatility and a compound Poisson
process. We consider how to separate jump times from the observed data. From the obtained results we
propose a new type of jump diffusion model for the share prices and a robust scheme to estimate the stochastic
volatility.
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Figure 1. Daily share prices of Nikkei 225 indexes, 2015/2/27∼4/8

1 INTRODUCTION

Fig. 1 shows daily share prices of Nikkei 225 indexes in the period of February 27th ∼ April 8th, 2015. Such
real data of daily share prices consist of only jumps without continuous parts. Therefore it is difficult to find
real jumps to distinguish precisely between the jump part and the continuous part in the stock price model (1)
or (2) defined in the next section.

In this paper we show an algorithm to separate large jumps generated from daily share prices of Nikkei 225
indexes according to Ishida and K. (2015) and K. and Shieh (2019). From the results we can obtain a new type
of jump diffusion model for stock prices. Furthermore we would like to propose a new method to estimate the
stochastic volatility in the jump diffusion model.

2 MODELING OF SHARE PRICES

The following equation is a jump diffusion model of share prices proposed by Ball and Torous (1983), (1985),
Cont and Tankov (2008), Iino and Ozaki (1999), Kou (2002), etc.;

dS (t) = µS (t) dt+ σS (t) dB (t) + S (t) dZ (t) , 0 ≤ t ≤ T (1)

for small T , where S (t) is a share price, B (t) is a standard Brownian motion, µ is a trend parameter, σt > 0
is a volatility and Z (t) is a compound Poisson process. Furthermore the independence of B (t) and Z (t) is
assumed. Since the volatility σ and the trend µ change in a long period, recently the model (1) was improved
as the form

dS (t) = µtS (t) dt+ σtS (t) dB (t) + S (t) dZ (t) , 0 ≤ t ≤ T, (2)

where µt is a stochastic trend and σt is a stochastic volatility.

On the other hand, in Ishida and K. (2015) and K. and Shieh (2019) we investigated the daily share prices of
Nikkei 225 indexes to estimate the jump times of large size jumps. Since the usual model (2) can not fit our
results, we would like to propose the following new jump diffusion model;

dS (t) = µtS (t) dt+ σtS (t) dB (t) + σtS (t) dZ (t) , 0 ≤ t ≤ T. (3)

In the new model (3) the intensity λ > 0 of the compound Poisson process Z (t) is a constant in the whole
period [0, T ]. Although the risk of the share price S (t) changes very frequently in [0, T ], we would like to
show that the cause of the risk change mainly due to σt in (2) but not λ from the obtained data.

3 COMPOUND POISSON PROCESS Z (t)

Let N (t) be a counting process which means a number of jumps until the time t > 0. The distribution of
N (t) obeys the Poisson distribution such that

P {N (t) = k} = e−λt (λt)
k

k!
, k = 0, 1, 2, · · · (4)

for some positive constant λ > 0 which is called ”intensity”. Let t1, t2, · · · be jump times of N (t) and
τ1, τ2, · · · be differences of the jump times defined by

τk = tk − tk−1, k = 1, 2, · · · . (5)
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Define a compound Poisson process Z (t) by

Z (t) = Y1 + Y2 + · · ·+ YN(t), (6)

where Y1, Y2, · · · are i.i.d. random variables which mean jump sizes.

It is well known that τ1, τ2, · · · are i.i.d. random variables with the exponential distribution Exp(λ) such that

P {τk ≤ x} =

∫ x

0

λe−λsds (7)

for each k = 1, 2, · · · . In the following sections we consider an algorithm to find the jump times t1, t2, · · · by
an estimator χ2

α for the testing fitness to the Poisson distribution of samples of Z (1).

4 ESTIMATION OF THE TREND µt AND THE VOLATILITY σt > 0

We estimate µt and σt > 0 from the Nikkei 225 indexes data. Let

r (k) = log
S (k + 1)

S (k)
≃ S (k + 1)− S (k)

S (k)
(8)

be the return of the kth day and put

st =

√√√√ 1

ℓ− 1

ℓ∑
k=1

(r (t− k)− r̄)
2
, r̄ =

1

ℓ

ℓ∑
k=1

r (t− k). (9)

st is the historical volatility estimating σt > 0 using share prices of ℓ days. Furthermore let

µ̄ (t) = log
S (t)

S (t− ℓ)
(10)

be an estimator of µt.

Standardize r(t) ;

R (t) =
r (t)− r̄ (t)

st
(11)

5 PROCEDURE FOR IDENTIFYING JUMP TIMES OF LARGE JUMPS

Since the counting process N (t) obeys Poisson distribution

P {N (t) = k} = e−λt (λt)
k

k!
, k = 0, 1, 2, · · · , (12)

we estimate the intensity λ by the following steps.

We define an unit period with q days and divide 7447 days of 30 years from 1986 to 2015 into

L =

[
7450

q

]
(13)

periods.

We count the number of jumps observed in each period which means a sample of N(1).

We identify jump times of R (t) for large size jumps in each period by the following way.

1st step : Put a threshold level α > 0 which controls the jump size.

2nd step: If |R (k)| ≥ α in the jth period, then we consider that the kth day is a jump time. Let mj be the
number of all jumps larger than α in the jthe period. mj , j = 1, 2, ..., L are samples of N (1).
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3rd step: For the samples mj , j = 1, 2, ..., L, put

λα =
1

L
(m1 +m2 + · · ·+mL) , (14)

which is an estimator of intensity of Poisson distribution.

4th step: Let nk be the number of periods having k jumps in a period. From the definition of nk

n0 + n1 + · · ·+ nK = L,

where K is the maximum of number of jumps in a period.

5th step: Calculate the following estimator χ2
α for the test of goodness of fit to Poisson distribution with the

intensity λα for the samples n0, n1, · · · , nK .

χ2
α =

K+1∑
k=0

(nk − kpk)
2

kpk
, (15)

where

pk = e−λαt (λαt)
k

k!
, k = 0, 1, 2, · · · ,K

and

pK+1 = 1−
K∑

k=1

e−λαt (λαt)
k

k!
.

6th step: Compare χ2
α for all combinations of number of days in a unit period q = 20, 30, 40 and

number of days to observe the historical volatility with ℓ = 10, 15, 20, 25, 30. Calculate χ2
α for each

α = 1.0, 1.1, · · · , 2.6.

7th step: Find returns r(t) which minimize χ2
α for some q and ℓ. If the minimum χ2

α is small enough, we
conclude that these returns are Poisson-distributed and they are generated by the compound Poisson process
Z(t).

6 TABLES AND INVESTIGATION

Table 1. q=20, ℓ=7446 (non-random volatility model)

α 1.9 2.0 2.1 2.2
χ2
α 4490.7 1416.0 1371.7 907.84

λα 1.1374 0.9035 0.8382 0.7250

Since χ2
α > 900 in Table 1 for every α ≤ 2.2, we can easily understand that the volatility changes randomly.

In Table 2 with q=30, ℓ=25, χ2
α ≤ 10 for almost α ≥ 1.0. Thus we can see that the numbers of jumps

n0, n1, · · · , nK with jump size α obey the Posson distribution with the intensity λα for each α ≥ 1.0.

On the other hand, χ2
α ≥ 10 for any α ≥ 1.0 in Table 2 with q=30, ℓ=30 . The result means that the

combination of q and ℓ is critcal for the quantity of χα, where q is the number of days in the unit interval
which divides 7447 days in 30 years to L =

[
7447
q

]
intervals and ℓ is the number of observed days used in the
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Table 2. q=30, ℓ=25

α 1.0 1.1 1.2 1.3 1.4 1.5
χ2
α 8.5224 8.00047 8.90629 14.200 8.4489 12.775

λα 9.6693 8.3709 7.1572 6.1975 5.4233 4.6209

α 1.6 1.7 1.8 1.9 2.0 2.1
χ2
α 20.494 7.6199 4.6648 3.2161 7.8219 5.3526

λα 3.8750 3.3185 2.8225 2.4475 2.0241 1.7298

α 2.2 2.3 2.4 2.5
χ2
α 8.5603 8.3653 4.4160 5.2399

λα 1.4233 1.2177 1.0322 0.8588

Table 3. q=30, ℓ=30

α 1.9 2.0 2.1 2.2 2.3
χ2
α 14.228 30.136 31.743 20.925 28.083

λα 2.3024 1.9435 1.6572 1.3991 1.1733

Table 4. Frequency distribution table of returns with |R (t)| ≥ 1, q=30 days, ℓ=25 days

r(t) ∼ -0.1 ∼ -0.09 ∼ -0.08 ∼ -0.07 ∼ -0.06
frequency 4 1 0 4 8
r(t) ∼ -0.05 ∼ -0.04 ∼ -0.03 ∼ -0.02 ∼ -0.01

frequency 17 32 108 308 505
r(t) ∼ 0.00 ∼ 0.01 ∼ 0.02 ∼ 0.03 ∼ 0.04

frequency 236 175 572 283 86
r(t) ∼ 0.05 ∼ 0.06 ∼ 0.07 ∼ 0.08 ∼ 0.09

frequency 33 14 4 5 0
r(t) ∼ 0.1 0.1 ∼

frequency 1 3

Table 5. Frequency distribution table of returns with |R (t)| < 1, q=30 days, ℓ=25 days

r(t) ∼ -0.05 ∼ -0.04 ∼ -0.03 ∼ -0.02 ∼ -0.01
frequency 1 1 6 32 393

r(t) ∼ 0.00 ∼ 0.01 ∼ 0.02 ∼ 0.03 ∼ 0.04
frequency 2201 1974 360 41 6

r(t) ∼ 0.05 ∼ 0.06 ∼ 0.07 0.07 ∼
frequency 1 2 2 0
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historical volatility s2t .

We next consider the reason why the distribution of numbers of R (t) such that |R (t)| ≥ α fits Poisson
distribution from the view points of jump diffusion models of share prices (2) and (3), respectively.

Under the jump diffusion model (3), the increment ∆S (t) can be represented by

∆S (t) = µtS (t)∆t+ σtS (t)∆B (t) + σtS (t)∆Z (t) (16)

where

∆S (t) = S (t+∆t)− S (t) , ∆B (t) = B (t+∆t)−B (t) , ∆Z (t) = Z (t+∆t)− Z (t)

Let rt be the return of S (t) defined by

r (t) =
S (t+∆t)− S (t)

S (t)
=

∆S (t)

S (t)
= µt∆t+ σt∆B (t) + σt∆Z (t) (17)

Let R(t) be the normalized return defined by

R (t) =
rt − µt∆t

σt
= ∆B (t) + ∆Z (t) (18)

When the stock price model (3) is assumed, if the volatility σt is small then r(t) is also small and it is difficult
to find the jump times in this case. On the other hand, the normalized return R(t) is independent of σt, we can
find jump times when the volatility σt is small.

We should like to present such results from the investigation of stock indexes.

Put ∆t = 1. Then rt is the daily return and we have

P {|R (t)| ≥ 2 |∆Z (t) = 0} =
P {|R (t)| ≥ 2, ∆Z (t) = 0}

P {∆Z (t) = 0}
(19)

=
P { |∆B (t) + ∆Z (t)| ≥ 2, ∆Z (t) = 0}

P {∆Z (t) = 0}

=
P { |∆B (t)| ≥ 2}P {∆Z (t) = 0}

P {∆Z (t) = 0}
= P { |∆B (t)| ≥ 2} ≃ 0.05,

which implies that if a jump does not occur at the t-th day, then |R (t)| < 2 with probability 0.95. Thus we
have the following Remarks 1 and 2.

Remark 1. From Table 4 we can observe 411 days with |R (t)| ≥ 1 but |r (t)| < 0.01. Normalizing r (t)
by historical volatility s(t) picks up these small returns less than 0.01 which are generated by the compound
Poisson process Z(t). Since χ2

α is very small, large returns picked up by our method fit to Poisson distribution
very well.

Remark 2. From Table 5 we can observe 92 days with |R (t)| < 1 but |r (t)| ≥ 0.02. Normalizing r (t) by
historical volatility s(t) evaluates these large returns more than 0.02 are generated by the continuous process
like B-S model. Since χ2

α is very small, large returns picked up by our method fit to Poisson distribution very
well.

On the other hand, under the usual jump diffusion model (2) we have

R (t) =
rt − µt∆t

σt
= ∆B (t) +

∆Z (t)

σt
. (20)

Thus Table 2 means that Z(t)
σt

obeys the Poisson distribution. The result inconsistent with that Z (t) is a
compound Poisson process. Therefore we would like to propose (3) as a financial stochastic model for share
prices.
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7 VOLATILITY ESTIMATION

As we mentioned in the previous section, χ2
α ≤ 10 for almost α ≥ 1.0 in Table 2 with q=30, ℓ=25. The result

means that the root of the historical volatility st defined by (9) with share prices of ℓ = 25 days optimally
estimates the stochastic volatility σt. We would like to explain the detail of the volatility estimation in K. and
Shieh (2019).

8 CONCLUSION

1. From Table 1 we can easily find that volatility changes randomly.

2. In Table 2 with q=30, ℓ=25, χ2
α ≤ 10 for almost α ≥ 1.0. Thus we can see that the numbers of jumps

n0, n1, · · · , nK with jump size α obey the Poisson distribution with the intensity λα for each α ≥ 1.0. The
quantity of χ2

α for α > 1.0 is almost same as for Poisson-distributed random numbers generated by computer
simulation. Therefore we consider that the returns with these jumps are generated by the compound Poisson
process Z(t).

3. From these results we can find not only jump times of large jumps for Nikkei 225 indexes but also optimal
historical volatility for the stock index. The root of the historical volatility st defined by (9) with share prices
of ℓ = 25 days optimally estimates the stochastic volatility σt.

4. The stock price model (3) fits our observations.
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