
An integrated optimisation functionality for Workspace
D. Potter a, L. Hetherton b, D. Thomas b, R. McNaughton a, and D. Watkins b

aCSIRO Energy, PO Box 330, Newcastle, NSW 2300, Australia
bCSIRO Data61, PO Bag 10, Clayton South, VIC 3169, Australia

Email: daniel.potter@csiro.au

Abstract: Scientific Workflow Systems (SWSs) allow scientific workflows, networks of operations connected
with directed data flows, t o b e e fficiently de veloped, ex ecuted an d sh ared wi th ot hers. By le veraging the
built-in functionalities of SWSs, users can focus on creating domain specific content such as physical models.
Workspace (Watkins et al. (2017)) is a scientific workflow and application development platform developed by
the CSIRO. Users construct workflows using an intuitive graphical i nterface. Input and output variables can
be viewed and modified using graphical interface objects called widgets which are implemented using the Qt
framework 1. A suite of plugins that provide operations, data types and widgets for tasks such as data analysis,
file IO, 3D rendering and scripting are provided out-of-the-box, and users can create their own custom plugins.
Wizards for creating new plugins, operations, data types and widgets are available, allowing the C++ source
code skeletons to be automatically created, minimising development overhead.

Mathematical optimisation involves utilising numerical algorithms to find t he b est s olution t o o ne o r more
objective functions, and is a functionality of great utility across many scientific and engineering disciplines.
Optimisation functionalities have previously been implemented in a number of SWSs. For example, optimisa-
tion frameworks have been developed for Taverna (Crick et al. (2009)), Kepler (Abramson et al. (2010)) and
Nimrod/OK (Nguyen et al. (2017)). Prior to the current work, an integrated optimisation functionality has not
been available in Workspace. Whilst parameter sweeps could be set up and controlled from within Workspace,
applying algorithmic optimisation methods required either executing the workflow from an external optimisa-
tion tool, or the development of optimisation logic in a custom plugin as done in the present work. There is
considerable value in developing such an integrated optimisation functionality for Workspace due to its unique
capabilities as a SWS — in particular, the ability for Workspace to allow research codes to be transformed
into professional standalone applications. For example, standalone applications have been developed using
Workspace for bushfire spread prediction (Spark, Miller et al. (2015)), modelling of elite-level diving (Dive
Mechanic, Cohen et al. (2017)), and solar power plant design (Heliosim, Potter et al. (2018)). The present
work would allow optimisation to be incorporated into such standalone applications with minimal reformula-
tion of existing plugins and workflows. Furthermore, Workspace supports remote execution and parallelisation
of loops that could be used to allow the rapid execution of complex objective functions.

In previous work (Potter et al. (2018)), a plugin, workflow and standalone application called Heliosim has been
developed using Workspace for the optimisation and simulation of central receiver concentrating solar thermal
(CST) facilities. The central receiver CST involves the use of heliostats (mirrors that track the sun) to reflect
solar radiation onto a central tower-mounted receiver located at the focal point, where the thermal energy
can be stored and used for power generation or industrial processes. The core functionality of the Heliosim
software is the simulation of heliostat optics using Monte Carlo ray tracing and the simulation of receiver
heat transfer via a finite-volume model. This core functionality is used to form objective functions for the
optimisation of the heliostat field layout, tower height and receiver geometry. The C++ code underpinning the
integrated optimisation functionality presented in this paper was originally part of the numerics library used
by the Heliosim software. This functionality has now been exposed as the Optimisation Loop operation in a
newly developed Numerical Methods plugin for Workspace. The motivation for creating a devoted numerical
methods plugin is the potential for its more general use beyond the current audience for the Heliosim plugin,
which is mainly within the CST research group at CSIRO. In this paper, the software design of the Optimisation
Loop operation is described, and an implementation of the Nelder-Mead simplex algorithm is validated. A case
study is then presented where up to seven constrained variables describing the geometry of a beam-down CST
reactor for producing hydrogen are simultaneously optimised to maximise annual energy output.

Keywords: Scientific workflow, optimisation, solar energy

1https://www.qt.iotest

23rd International Congress on Modelling and Simulation, Canberra, ACT, Australia, 1 to 6 December 2019
mssanz.org.au/modsim2019

463

D. Potter et al., An integrated optimisation functionality for Workspace

1 SOFTWARE DESIGN

A diagram describing the Numerical Methods and Heliosim plugins in terms of the libraries they rely on for
functionality and the operations they provide to the Workspace user is shown in Figure 1. The core function-
ality of both plugins is defined in C++ libraries that have been in development and usage at the CSIRO for the
past 12 years. These C++ libraries link with a number of specialised third-party libraries. NLopt 2 provides
non-linear optimisation algorithms to the Numerics library. Armadillo (Sanderson and Curtin (2016)) provides
linear algebra solvers to the Numerics library. CoolProp (Bell et al. (2014)) provides thermodynamics models
to the Heat transfer library. NVIDIA OptiX (Parker et al. (2010)) provides GPU accelerated ray tracing to the
Optics library. The Workspace plugins expose various functionalities from the C++ libraries so that they can
be made available on the Workspace canvas as operations.

Figure 1. Structure of the Numerical Methods and Heliosim plugins for Workspace.

The layout of a very simple optimisation workflow (the Rosenbrock’s parabolic valley validation case pre-
sented in § 1.1) on the Workspace canvas is shown in Figure 2. The actor labelled ‘Optimisation loop’ is the
Optimisation Loop operation. In this simple example, the objective function is a Python script that takes a
vector or list of floating point values (~y) as input and returns a floating point scalar quantity (f) as output. The
Optimisation Loop operation has an output port labelled ‘Current solution vector’ that is connected to the ~y
input port of the objective function, and the f output port of the objective function is in turn connected back to
the Optimisation Loop operation via the ‘Objective function result’ input port. Thus a mechanism is formed
whereby the Optimisation Loop operation is able to evaluate f(~y) for arbitrary ~y by setting the ‘Current so-
lution vector’ output port and requesting the workflow execution manager to update the ‘Objective function
result’ input port. From the perspective of the ‘Optimisation loop’ operation, the contents of the objective
function workflow is arbitrary — it can be as simple as a Python script as in this example, or much more com-
plex with networks of many operations including the full range of functionality provided by the built-in and
third-party Workspace plugins (e.g. system calls, web requests, remote execution, parallelised loops, custom
user created operations). From a C++ programming perspective, this is achieved by the class defining the Op-
timisation Loop operation using inheritance and abstraction to allow access to the optimisation functionalities
defined in the core Numerics C++ library.

The Optimisation Loop operation has a number of additional input ports that allow the optimisation problem
to be further defined, and additional output ports that allow the history of the optimisation iterations to be anal-
ysed. The additional input ports include the name of the optimisation algorithm, the convergence tolerance,
the maximum iterations, and minimum, maximum and initial solution vectors. Currently the user can select
between five different optimisation algorithms: 1) Nelder-Mead simplex, 2) differential evolution, 3) con-
strained optimisation by linear approximations (COBYLA), 4) evolutionary search (ESCH) and 5) controlled
random search (CRS) with local mutation. The Nelder-Mead simplex and differential evolution algorithms
are custom C++ implementations, whilst the COBYLA, ESCH and CRS algorithms are accessed by linking
with the NLopt library. Although both the validation and case study presented in the present work utilise the
2http://github.com/stevengj/nlopttest

464

D. Potter et al., An integrated optimisation functionality for Workspace

(a) Basic connectivity
(b) With input and output port connectivity detail

Figure 2. Layout of a very simple optimisation problem workflow on the Workspace canvas.

Nelder-Mead simplex method due to their suitability to gradient descent methods, many real-world optimisa-
tion problems have discontinuous objective function and thus the availability of evolutionary methods.

1.1 Nelder-Mead simplex algorithm

The simplex method for function minimisation described by Nelder and Mead (1965) has been implemented
in the Numerics C++ library, which is then made available for use by the Optimisation Loop operation in
Workspace. This is one of the most commonly utilised optimisation algorithms for constrained, multi-variate,
single-objective optimisation problems. A simplex for an optimisation problem with n variables is a polytope
with n + 1 vertices — the simplex for a 2-dimensional problem, for example, is a triangle. The simplex is
progressively modified as the iterations proceed via replacing a vertex with a new vertex calculated by reflec-
tion, expansion, contraction and shrink operations. In the present implementation, the standard coefficients for
each operation have been used (1, 2, 1

2 and 1
2 for reflection, expansion, contraction and shrink, respectively).

Convergence is deemed to have occurred when the ratio between the current simplex diameter D and initial
simplex diameter D0 falls below a given tolerance ε, where the diameter of a simplex is computed as the
maximum ‘edge length’ (i.e. L2 norm of the difference between any two vertices of the simplex).

Validation. Rosenbrock’s parabolic valley has been considered as an objective function to test the perfor-
mance the Nelder-Mead simplex implementation. It is a bivariate objective function with many local minima,
and is therefore a strong test of an optimisation algorithms ability to find the actual global minimum. The
equation describing Rosenbrock’s parabolic valley is shown in Equation 1.

f(y0, y1) = 100(y1 − y20)2 + (1− y0)2 (1)

A summary of the input parameters and results for optimisation of Rosenbrock’s parabolic valley with the
Nelder-Mead simplex algorithm using the Optimisation Loop operation in Workspace is shown in Table 1. The
global minimum of ~y = (1, 1) was found to within a root mean square deviation (RMSD) of 1× 10−6 in 119
iterations. Although this number of iterations to convergence is high, many other gradient based optimisation
algorithms (such as the COBYLA algorithm from NLopt) fail to reach the actual global minimum.

2 CASE STUDY: OPTIMISATION OF A BEAM-DOWN CST RECEIVER

The CSIRO, in collaboration with Niigata University and the Institute of Applied Energy in Japan, have re-
cently started a project investigating a solar powered thermochemical water splitting process for the production
of hydrogen. As described by Kodama et al. (2019), the process includes the cyclic reduction and oxidation
of a cerium oxide catalyst at temperatures of up to 1300 ◦C. To achieve these temperatures, solar energy is
required to be concentrated to the equivalent energy of 1500 suns, and redirected (i.e. ‘beam-down’) by a
mirrored reflector onto a horizontal fluidised bed in a reactor chamber. As part of the project, an experimental
reflector and reactor will be installed and operated at CSIRO Energy in Newcastle, using the Solar Field 1 ex-
perimental facility. The facility consists of 165 heliostats, which are rectangular paraboloid mirrors that track

465

D. Potter et al., An integrated optimisation functionality for Workspace

Parameter Value
Convergence tolerance, ε 1× 10−6

Initial solution, ~y0 (0.084, 1.6)
Converged solution, ~y (0.9999997, 0.9999993)

RMSD of converged and exact solutions 5.57× 10−7

Iterations to convergence 119

the sun to provide a beam of concentrated solar radiation onto the focal point, and a 20 m tall tower with a sup-
port ring that the reflector and reactor will be mounted onto. The overall system is physically constrained by
the pre-existing layout of the heliostat field and tower design, resulting in the need for an optimised secondary
reflector and reactor design to deliver adequate performance. Workspace and the optimisation loop operation
have been used to assist the design of the reflector and reactor geometry. Two different reflector concepts
are considered: 1) ellipsoid and 2) flat. Diagrams of both concepts are shown in Figure 3.

Upper focus

Ellipsoid reflector mirror

Lower focus

Incident solar
radiation

North

Reactor chamber aperture /

Fluidised bed surface

Quartz window

Linear contraction
(stainless steel)

(a) Ellipsoid reflector

Upper focus

Flat reflector mirror

Lower focus

Incident solar
radiation

North

Reactor chamber aperture /

Fluidised bed surface

Quartz window

Linear contraction
(stainless steel)

(b) Flat reflector

Figure 3. Diagram of the beam down CST reactor concept with various reflector configurations.

2.1 Objective function

The objective function to be optimised is the annual thermal energy captured by the fluidised particle bed.
The inputs into the objective function are the geometric parameters describing the reflector and reactor design
(see Figure 3). Therefore, the optimisation problem is constrained, multi-variate and single-objective. For a
given point in time, the thermal power captured by the fluidised particle bed (qt,f) can be approximated as the
absorbed solar radiation minus grey-body thermal radiation losses:

qt,f = (1− ρs,f) qsf − σεt,fπ
d2r
4
T 4
f (2)

where ρs,f , qsf , εt,f and Tf are the diffuse solar reflectance, incident solar irradiance, thermal emittance and
temperature of the fluidised bed surface, respectively. Values of ρs,f = 0.3, εt,f = 0.85 and Tf = 1500 K are
assumed based on Ackermann and Steinfeld (2017) and Matsubara et al. (2014). The incident solar irradiance

Table 1. Summary of input parameters and results for optimisation of Rosenbrock’s parabolic valley with the
Nelder-Mead simplex algorithm using the Optimisation Loop operation in Workspace.

466

D. Potter et al., An integrated optimisation functionality for Workspace

can be expressed as the product of the optical efficiency to the fluidised bed surface and the solar direct normal
irradiance (DNI). The optical efficiency is dependent on the reflector and reactor geometry and sun position,
and can be simulated via Monte Carlo ray tracing using functionality from the Heliosim plugin. The solar
DNI is obtained from historical measurements using pyrheliometers installed at CSIRO Newcastle. To reduce
computational expense when integrating Equation 2 on an annual basis, the optical efficiency is interpolated
from ray tracing simulations for a coarse grid of sun positions covering the annual sky traversal of the sun.

2.2 Workflow design

A screenshot of the Workspace GUI running the beam-down CST receiver optimisation workflow is shown in
Figure 4. The ‘objective function’ actor is a nested workflow that computes the annual thermal output from the
receiver. It is constructed using 30 operations, sourced from both the Heliosim plugin (e.g. GPU accelerated
Monte-Carlo ray tracing), and operations from the built-in catalogue (e.g. Python scripts and system calls). A
critical component of the objective function is the creation of the reflector and reactor surface meshes required
for the ray tracing simulations. Due to the complex nature of the geometry, the surface meshes are created
parametrically by system calls to SALOME3, an open source computer aided design software that supports
Python scripting. The workflow also incorporates post-processing of the optimisation iterations and converged
solution to allow the results to be visually displayed via interactive 2D charts and 3D scenes.

Figure 4. Workspace GUI running the beam-down CST receiver optimisation workflow.

2.3 Results

Initially, all geometric parameters (see Figure 3) except for the height of the linear contraction (hl) and the
reactor chamber diameter (dr) were allowed to be optimised. The linear contraction height was fixed at 0.35 m
as this is the minimum distance estimated to be required to keep the quartz window far enough away from the
fluidised bed surface to ensure it remains clean during operation. The reactor chamber diameter was fixed at
0.4 m based on the requirement of an average incident solar irradiance of 1.6 MW/m2 on the fluidised bed
surface as described by Matsubara et al. (2014), and a desired design thermal capacity of at least 100 kW.

The optimisation convergence history for the flat reflector geometry is shown in Figure 5. All variables can
be seen to have optimised values somewhere between the minimum and maximum values provided to the
optimisation algorithm, indicating that these ranges did not artificially constrain the optimisation. The Nelder-
Mead simplex algorithm was used due to its suitability to the constrained, multi-variate and single-objective
nature of the problem, and the convergence tolerance was set to 0.01. The converged solution was reached in
83 iterations, requiring a 1.5 hour wall time on an Intel Core i7-6920HQ CPU and NVIDIA Quadro M2000M
GPU. Reducing the convergence tolerance was found to substantially increase the number of iterations and
wall time required to reach the converged solution, without significantly improving the solution.
3http://www.salome-platform.orgtest

467

D. Potter et al., An integrated optimisation functionality for Workspace

(a) Nondimensionalised variable parameter values (b) Objective function

Figure 5. Optimisation convergence history for the flat reflector geometry.

The optimised quartz window radii for both reflector cases was found to be very large, being almost 1 m
for the flat reflector case. Due to the cost of quartz windows, such a size is not practical. A parametric
study was therefore performed where the quartz window radius was held constant at various sizes and the
other parameters re-optimised. The results of the parametric study are presented in Figure 6, where annual
efficiency is plotted against the quartz window radius for both reflector geometries. The annual efficiency is
calculated as the annual thermal energy absorbed by the fluidised bed divided by the annual solar DNI incident
on the heliostat field aperture area. The ellipsoid reflector allows good performance for relatively small quartz
window radii. The ellipsoid reflector, however, is significantly more complex to fabricate than the flat reflector.
A flat reflector with a quartz window radius of 500 mm has been selected to proceed with to the design phase
of the project as it represents a good balance of performance, simplicity and affordability.

300 400 500 600 700 800

0.16

0.18

0.2

0.22

0.24

Quartz window radius, rqw (mm)

A
nn

ua
le

ffi
ci

en
cy

,η

Ellipsoid
Flat

Figure 6. Annual efficiency versus quartz window radius for ellipsoid and flat beam-down reflectors.

3 CONCLUSIONS

An integrated optimisation functionality for Workspace has been validated and successfully applied in a case
study to optimise up to seven constrained variables of a scalar objective function describing the performance of
a beam-down CST reactor. The case study demonstrates some of the benefits of constructing an optimisation
problem with Workspace and the Optimisation Loop operation. The objective function combines system calls
to third party software, functionality from custom C++ libraries exposed via a Workspace plugin, and Python
scripting. The convergence history and converged solution are then visualised via interactive 2D charts and
3D scenes, allowing immediate insight into the optimisation process. These capabilities, namely the ability to
combine third party software, custom plugins and scripting languages, and data visualisation via interactive

468

D. Potter et al., An integrated optimisation functionality for Workspace

2D charts and 3D scenes, are features available out-of-the-box within Workspace. Although an optimisation
system with these features could be developed using languages such as Python or C++, the development
process is much simpler with Workspace due to the intuitive graphical interface and large number of existing
operations and widgets that can be leveraged by users. In this way Workspace and the Optimisation Loop
operation allows the creation and modification of complex workflows incorporating optimisation by users
without software development experience, as would be required with languages such as Python or C++. Work
is currently underway to improve the scope and performance of the Optimisation Loop operation by allowing
for multi-objective optimisation and parallelisation of the optimisation algorithms.

ACKNOWLEDGEMENT

This Activity received funding from ARENA as part of ARENA’s Research and Development Program —
Renewable Hydrogen for Export. The views expressed herein are not necessarily the views of the Australian
Government, and the Australian Government does not accept responsibility for any information or advice
contained herein.

REFERENCES

Abramson, D., B. Bethwaite, C. Enticott, S. Garic, T. Peachey, A. Michailova, and S. Amirriazi (2010). Em-
bedding optimization in computational science workflows. Journal of Computational Science 1(1), 41–47.

Ackermann, S. and A. Steinfeld (2017). Spectral hemispherical reflectivity of nonstoichiometric cerium diox-
ide. Solar Energy Materials and Solar Cells 159, 167–171.

Bell, I. H., J. Wronski, S. Quoilin, and V. Lemort (2014). Pure and pseudo-pure fluid thermophysical prop-
erty evaluation and the open-source thermophysical property library CoolProp. Industrial & Engineering
Chemistry Research 53(6), 2498–2508.

Cohen, R. C. Z., S. M. Harrison, P. W. Cleary, and M. Bolger (2017). Dive Mechanic : Bringing 3D virtual
experimentation to elite level diving using the Workspace workflow engine. In J. Syme, G., Hatton Mac-
Donald, D., Fulton, B. and Piantadosi (Ed.), 22nd International Congress on Modelling and Simulation, pp.
431–437. Modelling and Simulation Society of Australia and New Zealand.

Crick, T., P. Dunning, H. Kim, and J. Padget (2009). Engineering design optimization using services and
workflows. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 367(1898), 2741–2751.

Kodama, T., H. S. Cho, K. Inoue, T. Saito, S. Watanabe, N. Gokon, and S. Bellan (2019). Particles fluidized
bed receiver/reactor with a beam-down solar concentrating optics: First performance test on two-step water
splitting with ceria using a Miyazaki solar concentrating system. In AIP Conference Proceedings, Volume
2126, pp. 180011. AIP Publishing LLC.

Matsubara, K., Y. Kazuma, A. Sakurai, S. Suzuki, L. Soon-Jae, T. Kodama, N. Gokon, C. H. Seok, and
K. Yoshida (2014). High-temperature fluidized receiver for concentrated solar radiation by a beam-down
reflector system. Energy Procedia 49, 447–456.

Miller, C., J. Hilton, A. Sullivan, and M. Prakash (2015). Spark – a bushfire spread prediction tool. In R. Den-
zer, R. M. Argent, G. Schimak, and J. Hřebı́ček (Eds.), Environmental Software Systems. Infrastructures,
Services and Applications, Cham, Switzerland, pp. 262–271. Springer International Publishing.

Nelder, J. A. and R. Mead (1965). A simplex method for function minimization. The Computer Journal 7(4),
308–313.

Nguyen, H. A., Z. van Iperen, S. Raghunath, D. Abramson, T. Kipouros, and S. Somasekharan (2017). Multi-
objective optimisation in scientific workflow. Procedia Computer Science 108, 1443–1452.

Parker, S. G., J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Luebke, D. McAllister, M. McGuire, K. Mor-
ley, A. Robison, and M. Stich (2010). OptiX: A general purpose ray tracing engine. ACM Transactions on
Graphics 29(4), 10.

Potter, D. F., J.-S. Kim, A. Khassapov, R. Pascual, L. Hetherton, and Z. Zhang (2018). Heliosim: an integrated
model for the optimisation and simulation of central receiver CSP facilities. In AIP Conference Proceedings,
Volume 2033, pp. 210011. AIP Publishing LLC.

Sanderson, C. and R. Curtin (2016). Armadillo: a template-based C++ library for linear algebra. The Journal
of Open Source Software 1(2), 26.

Watkins, D., D. Thomas, L. Hetherton, M. Bolger, and P. W. Cleary (2017). Workspace – a Scientific Workflow
System for enabling research impact. In G. Syme, D. Hatton MacDonald, B. Fulton, and J. Piantadosi
(Eds.), MODSIM2017, 22nd International Congress on Modelling and Simulation, pp. 459–465. Modelling
and Simulation Society of Australia and New Zealand.

469

