
Two-patch model for contact process: migration extends 
the survival region of species 

Nariyuki Nakagiri a, Kazunori Satob, Hiroki Yokoic and Kei-ichi Tainakab 

a School of Human Science and Environment, University of Hyogo, Himeji 670-0092, Japan 
b Department of Systems Engineering, Shizuoka University, Hamamatsu 432-8561, Japan  

c National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency,  
Shimizu, 424-8633, Japan 

Email: nakagiri@shse.u-hyogo.ac.jp  

Abstract: Biospecies usually live in spatially separated patches. Recently, the population dynamics in such 
patchy environment have been studied extensively. We pay attention to contact process (CP) which is one of 
simplest ecosystems; both birth and death processes of a single species are carried out on a lattice. In the present 
paper, we prepare two lattices (patches), and study metapopulation model for CP. Inside respective patches, 
the birth and death processes of agents (individuals) are carried out. Between patches, agents can migrate. 
Previously, many authors applied reaction-diffusion equations. Conventional migration method is a diffusion 
process: migration usually occurs from high-density to low-density patch. However, we apply a refined 
migration model. A distinct point of the present article is to apply a nonlinear migration; namely, an agent 
moves into an empty cell. The migration is impossible, if there is no empty cell. We explore the population 
dynamics depending on mortality rates. If the mortality rate exceeds a critical value (μc), the species cannot 
survive. All mean-field models take the same value of μc, irrespective of migration rate.  In the case of spatial 
migration model, however, μc takes a higher value with the increase of migration rate. Hence, the survival 
parameter region of species on lattices is extended by migration. 

Keywords: Birth and death process, metapopulation, Agent-based model, dynamic phase transition, finite 
sizes of patches 
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1. INTRODUCTION 

Many biospecies live in spatially separated patches. The population dynamics in such patchy environment is 
called as metapopulation model in ecology (Hanski, 1999; Hanski and Gilpin, 1997; Levin, 1974). Recently, 
the metapopulation model has been applied in various fields (Nagatani et al., 2018a; 2018b; Sasmal and Ghosh, 
2017), such as epidemiology (Nagatani et al., 2019) and human behaviors (Kabir and Tanimoto, 2019; Wu and 
Zusai, 2019). In network study, the patches correspond to nodes, and paths connecting patches are thought to 
be links (Seno, 1998; Nagatani et al 2018a). 

In the present article, we deal with two-patch model for contact process (Harris, 1974). An agent- or individual-
based model is applied to an ecosystem (Nakagiri et al., 2001; 2005; 2010; Nakagiri and Tainaka, 2004; Chen 
et al., 2016; Perc, 2011; Szabó and Fath, 2007; Szolnoki and Perc, 2017; Tainaka, 1988; 1989) to take into 
account the limiting space of patch. Agents live in two patches (lattices), and they randomly migrates between 
patches. Such a spatial model is very rare in metapopulation researches. Contact process (CP) is extensively 
studied in various fields, such as mathematics (Harris, 1974; Liggett, 1985) and physics (Marro and Dickman 
1999; Katori and Konno, 1991). In epidemiology, CP corresponds to the Susceptible-Infected-Susceptible 
(SIS) model (Cota et al., 2018; Gross et al., 2006; Peterson, 2010). 

We consider CP as an ecosystem; a single species lives on two lattices. Each lattice site is either empty (O) or 
occupied (X) by an agent. Interactions take place inside respective patches as follows: 

 rX O X X+ → +  (rate: r),   (1a) 
 X Oµ→  (rate: μ),   (1b) 
Here, reactions (1a) and (1b) denote birth and death processes, respectively. The parameter r and μ means 
reproduction rate and death rate, respectively. 

2. PRELIMINARY  

2.1. One-patch model 

The previous results for CP are reported. First, we describe 
the results of one-patch model. We define a patch capacity 
(S) which means the total number of cells on a lattice. Since 
S is constant, we put S=1. Let x(t)  be the density of 
occupied cell at time t. Then the dynamics of system (1) is 
described by 

[ ]( ) / ( ) 1 ( ) ( )dx t dt rx t x t x tµ= − −  (2) 
The first and second term in the right hand side means birth 
and death process, respectively (Hofbauer and Sigmund, 
1998; Marro and Dickman 1999). Eq. (2) can be rewritten 
by logistic function: 

1xdx x
dt

R
K

 −


= 


  (3) 

where R=r-μ and K=1-μ/r. At equilibrium, the positive 
equilibrium density (x*) is given by x*=K. If we put r=1, 
we have x*=1-μ. When μ<1, the species survives. When 
μ>1, the species goes extinct. The critical value μc between 
survival and extinction phases is given by μc=1 for well-
mixed population. In the case of spatial model, the reaction 
(1a) occurs between a pair of adjacent cells. For a square 
lattice, the result of μc≈ 0.62 is well known.  

2.2. Conventional two-patch model 

Second, we explain the previous two-patch model for 
system (1). An agent freely migrates between patches 1 and 2 [see Fig. 1 (a)]. Let ( )jX t  be the density of X 
cell in patch j at time t. In addition, rj and μj is defined by the reproduction and death rate in patch j, respectively. 
The density is described by 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic illustrations of migration 
methods. (a) Conventional migration, (b) 

“swapping migration”. Subpopulations (patches) 
are numbered 1 and 2. We only display the case 
that an agent (X) migrates from patch 1 to 2. In 
(b), the occupied and empty cells are exchanged 
by migration. If there is no empty cell in patch 2, 

any agent in patch 1 cannot migrate. 

 

(b)  
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1   j j
j j k j

j

dX X
R X m X X

dt K
 

 = − + −    
 

 (4) 

where Rj = rj ― μj and Kj = Sj (rj ― μj ) / rj. The first and second term in the right hand side means reaction and 
migration, respectively (Kuang and Takeuchi, 1994; Shigesada and Kawasaki, 1997). The migration term is 
represented by a linear function of densities (Seno, 1998).  

3. CONTINUOUS TIME STOCHASTIC 
MODEL 

In Fig. 1(a), a conventional migration is illustrated. In 
the present paper, however, we apply “swapping 
migration” (Yokoi et al 2019). As displayed in Fig. 1 
(b), the migration is defined by the exchange between 
occupied (X) and empty (O) cells. Here, we employ 
periodic boundary conditions. We carried out 
simulations out as follows:  

i) Birth process. We randomly choose a single cell 
among two lattices. When the chosen cell is X in 
patch i, then we select one more cell from four 
adjacent cells in the same patch. If the latter cell is 
O, it is changed to X by rate ri. 

ii) Death process. We randomly choose one cell from 
two lattices. If the cell is X in patch i, then it 
becomes O by rate µi. 

iii) Migration. We randomly choose one cell from two 
lattices. If the cell is X in patch i, then we choose 
one more cell in patch j. If the latter cell is O, then 
X migrate by rate m. After the migration, both X 
and O are exchanged. 

4. MEAN-FIELD THEORY 

The dynamics of mean-field theory (well mix 
population) for CP of two-patch model with nonlinear 
migration (Yokoi et al., 2019) is given by 

] [        j
j j j j k j j k

d
e e e

X
X r m X X

dt
µ = − + + −   (5) 

where ej is the empty density in patch j. The first term 
in the right hand side means death and birth processes 
in patch j. From the simulation method, the birth 
process occurs in proportion to ej that means the 
fraction of empty cell within patch j. In contrast, Ej is 
the empty density in total both patches i and j. 
Namely, ej=(Sj-Xj) / Sj and Ej=(Sj-Xj) / (S1+S2) ; thus 
we obtain ej=Ej / Sj. The last term in Eq. (5) means 
migration process. From the simulation method, both 
immigration and emigration terms are proportional 
not to Ej but to ej. It should be emphasized that the 
migration term in Eq. (5) is represented by nonlinear 
function of densities. The positive equilibrium density 
(Xj

*) is obtained by setting all the time derivatives in 
(5) for j=1, k=2 and for j=2, k=1 to be zero and solving 
these equations for X1 and X2 (Yokoi et al., 2019), but 
it is a little complicated so we omit to give it here.  

Table 1. Parameter lists ( rj=1 ).   

 S1 S2 m 
nonlinear migration of 

MFT fig3(a) 
0.5 0.5 1 

nonlinear migration of 
MFT fig3(b) 

0.8 0.2 1 

nonlinear migration of 
MFT fig3(a) 

0.5 0.5 1 

nonlinear migration of 
MFT fig3(b) 

0.8 0.2 1 

spatial model of 
fig.4(a)   

0.5 0.5 0 

spatial model of 
fig.4(b)   

0.8 0.2 0 

spatial model of 
fig.4(c)   

0.5 0.5 1 

spatial model of 
fig.4(d)   

0.8 0.2 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Population dynamics for spatial 
migration model (r1=r2=1). The capacity (S1) of 

patch 1 is set to be 0.8: we use 200x200 and 
100x100 lattice for patch 1 and patch 2, 

respectively. Initial values are set as X1=0.16, 
X2=0.04. (a) Survival phase: μ1=μ2=0.6, (b) 

extinction phase: μ1=μ2=0.9. 
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5. RESULTS  

We describe the results for spatial and non-spatial metapopulation models. Non-spatial model is further 
classified into conventional (linear) and mean-field (nonlinear) migration models. Hereafter, we fix rj=1. In 
Fig. 2, typical population dynamics are plotted for spatial model, where (a) and (b) correspond to survival and 
extinction phases, respectively. In every case, the system is found to evolve into a stationary state. The final 
state is either survival or extinction phase. 

We explore the densities in stationary state for both spatial metapopulation model and mean-field theory. First, 
we consider the case that the death rates in both patches take the same value: μ1=μ2=μ. The predictions of 
mean-field theory are described. The equilibrium Xj

* are numerically obtained. In Fig. 3, the steady-state 
densities are plotted against μ, where both (a) and (b) represent the cases of mean-field theory (nonlinear 
migration). For the sake of comparison, the results of conventional metapopulation model (linear migration) 
are shown in Figs. 3 (c) and (d). The critical value μc between survival and extinction phases is always given 
by μc=1 for all non-spatial models. The value μc=1 never changes for both migration model (m>0) and one-
patch model (m=0). 

On the other hand, spatial model shows different behaviors. In Fig. 4, the steady-state densities are plotted 
against μ for spatial migration model. Both (a) and (b) are the results for m=0, while (c) and (d) are those for 
m=1. In non-migration case (m=0), the critical value takes μc≈ 0.62. In contrast, it is found from Fig. 4 (c) and 
(d) that the survival parameter region is extended by migration; we have μc≈0.88 for m=1. Next, we consider 
the case of μ1≠ μ2. The results of mean-field theory are reported. We fix μ2=μc=1, and change the value of μ1. 
Numerical calculations for m≧0 exhibit that the critical value takes μ1c=1; namely the species survives for 
μ1<1 and goes extinct for μ1≧1. Thus, the survival parameter region is always unchanged for mean-field 
theory. In the case of spatial model, we fix μ2=0.88, and change the value of μ1. Computer simulations for m=1 
reveal that the critical value takes μ1c≈ 0.88. This is the same value for μ1=μ2 (m=1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Results for mean-field theory (nonlinear migration). The densities in stationary state are plotted 
against μ, where we put μ1=μ2=μ. The equilibrium densities X*

j are numerically obtained at (a) S1=0.5 and (b) 
S1=0.8. For the sake of comparison, the results of conventional metapopulation model (linear migration) are 

displayed in (c) S1=0.5 and (d) S1=0.8. All non-spatial models exhibit that the phase-transition point is 
represented by μc=1. 

 
(a) Mean-field theory  S1=0.5             (b) Mean-field theory  S1=0.8 

 

(c) Linear migration  S1=0.5              (d) Linear migration  S1=0.8 
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The spatial pattern formations are explored. In Fig. 5, the spatial distributions in stationary state are displayed 
near critical points, where (a) m=0 and (b) m=1. In no-migration case [Fig. 5 (a)], agents aggregate and form 
clusters. In contrast, agents randomly disperse for m=1 [Fig. 5 (b)]. Namely, agents effectively catch the empty 
(O) by migration. It should be noted that the cell O is an essential substance (e.g. resource) for birth process (1a).  
 

Figure 4. Same as Fig. 3, but for spatial migration model (μ1=μ2=μ). When migration rate (m) increases, the 
survival parameter region is extended. (a) m=0, S1=0.5, (b) m=0, S1=0.8, (c) m=1, S1=0.5, (d) m=1, S1=0.8. In the 

case of S1=0.5, we use 100x100 lattice for both patches. On the other hand, when S1=0.8, we use 200x200 and 
100x100 lattice for patch 1 and patch 2, respectively. 
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Figure 5. Typical spatial pattern near extinction points. Distributions in patch 1 are displayed (μ1=μ2=μ). (a) 
m=0, μ=0.6, (b) m=1, μ=0.8. In non-migration case (m=0), the species forms clusters (swarms). However, such 

swarms are collapsed by migration. 
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6. CONCLUSION 

Migration is widely observed in nature (Alerstam, et al., 2003; Shaw, 2016; Yahagi, et al., 2017). In the present 
article, spatial (agent-based) model is applied to metapopulation dynamics. This lead to “swapping migration” 
(Yokoi et al 2019). As displayed in Fig. 1 (b), the migration is defined by the exchange between occupied (X) 
and empty (O) cells. Such a swapping movement is very popular for other transport phenomena. An example 
is a traffic flow (Gupta et al., 2013; Peng, 2015). A mobile agent (car) cannot move into an occupied cell. 
When a car moves from occupied to an empty cell, both occupied and empty cells are exchanged. Another 
example is a random walk of individuals in one-patch ecosystem (Berg, 1993; Sato et al., 2015). Individuals 
randomly walk, but they cannot go into empty cells. It is found from non-spatial models that the critical value 
(μc=1) never changes for both migration (m>0) and non-migration (m=0) models. In contrast, the spatial model 
shows different behaviors. The critical value takes μc≈0.62 without migration (m=0), whereas we have μc≈0.88 
with migration (m=1). Hence, the survival parameter region is extended by migration. It is, however, unclear 
how this work is translated into the understanding of a relevant real world phenomenon. 
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