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Abstract: Catastrophic bushfire that destroys the assets and multiple facilities happened many times all over
the world in the last two decades. The majority of the most damaging fires involve wind and terrain, in order
to predict the spread process of bushfire in various geographical and weather conditions, a hybrid numerical
method is proposed for bushfire simulation. The outputs from the numerical simulation of bushfire can be used
to guide the extinguishment process and improve the security. The present numerical method includes three
parts: fluid solver, heat transfer solver, and immersed boundary method for fluid–structure interaction and heat
transfer. Specifically, the multi-relaxation time lattice Boltzmann method is adopted for the dynamics of non-
Newtonian flow, with sub-grid viscosity model for large eddy simulation, a geometry-adaptive technique to
enhance the computational efficiency and immersed boundary method to achieve no-slip boundary conditions.
The heat transfer equation is spatially discretized by a second-order up-wind scheme for the convection term, a
central difference scheme for the diffusion term, and a second-order difference scheme for the temporal term.
The major contribution of this work is the integration of spatial adaptivity, thermal finite difference method,
and fluid flow immersed boundary-lattice Boltzmann method. Several benchmark cases including power-
law fluid flow and heat transfer around a stationary cylinder and flow around a stationary sphere are used to
validate the present method and developed solver. The good agreements achieved by the present method with
the published data indicate that the present extension is an efficient way for fluid–structure interaction and heat
transfer in fluid flow. In addition, a demonstration considering bushfire–wind–terrain interaction is presented.
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1 INTRODUCTION

Catastrophic bushfire that destroys the assets and multiple facilities happened many times all over the world
in the last two decades. The majority of the most damaging fires involve wind and terrain, in order to predict
the spread process of bushfire in various geographical and weather conditions, it is necessary to develop an
efficient numerical method.

As an alternative method of computational fluid dynamics (CFD), the lattice-Boltzmann method (LBM) has
received remarkable attentions due to its simplicity in parallelized computation (Chen and Doolen, 1998; Tian
et al., 2011; Guo and Shu, 2013; Xu et al., 2018). In terms of the numerical simulation of thermal fluid systems,
most of the previous thermal LBM models adopt the multi-speed approach (Alexander et al., 1993; Qian,
1993; Chen et al., 1997), in which additional particle speeds are needed to obtain the energy equation at the
macroscopic level (Inamuro et al., 2002). The additional particle speeds decrease the computational efficiency
and the stability is also limited. In order to keep the simplicity of LBM, Peng et al. proposed a simplified
thermal lattice Boltzmann model, neglecting the compression work done by the pressure and viscous heat
dissipation (Peng et al., 2003). In this study, an alternative method to solve the heat transfer in fluid flow is
presented, which conserves the simplicity and efficiency of LBM. Where, the fluid dynamics and heat transfer
are solved independently by LBM and finite difference method, respectively, with multi-relaxation time and
geometry-adaptive mesh technique to achieve good stability and computational efficiency, respectively. The
dynamic subgrid-scale eddy viscosity model proposed by Lilly (Lilly, 1992) is incorporated into the IB–LBM
solver for large-eddy simulation (LES). In addition to the thermal process, the fluid–structure interaction (FSI)
is also achieved by using an penalty immersed boundary method, which makes it easy for the present method
to handle complex geometries.

2 NUMERICAL METHODS

In this paper, the non-Newtonian flow and heat transfer involving complex boundaries are considered, where
the LBM is adopted for the fluid solver, the finite difference method is used to solve the heat transfer equa-
tion, and the complex no-slip boundaries are achieved by an IB method. The numerical methods are briefly
introduced in this section, the details can be found in Ref. (Wang and Tian, 2018).

2.1 Fluid Solver

In the MRT-based IB-LBM, the evolution equation of the velocity distribution function gi along the i-th direc-
tion at position x with BGK approximation is expressed as (Guo and Zheng, 2008)

gi(x + ei∆t, t+ ∆t) = gi(x, t)− Ωi(x, t) + ∆tGi, i = 0, 1, ..., 18, (1)

where ∆t is the time step. The collision operator Ωi and Gi, which represent the body force effects on the
distribution function, are defined as

Ωi = −(M−1SM)ij [gj(x, t)− geqj (x, t)] (2)

Gi = [M−1(I − S/2)M ]ijFj (3)

whereM is a 19×19 transform matrix for the D3Q19 model (three dimensional with 19 directions) used here,
and S is a non-negative diagonal matrix related to the fluid viscosity. The macro density and momentum are
given as follows,

ρ =
18∑
i=0

gi, ρu =
18∑
i=0

giei +
1

2
f∆t. (4)

The local equilibrium distribution function geqi and the force term Gi are calculated by

geqi = ωiρ[1 +
ei · u
c2s

+
uu : (eiei − c2sI)

c4s
], (5)

Gi = ωi[
ei − u

c2s
+

ei · u
c4s

ei] · f , (6)
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where ωi are the weights (Tian et al., 2011). The sound speed cs = ∆x/(
√

3∆t), and f is the force acting
on the fluid. For two-dimensional simulation, D2Q9 model is adopted. The relaxation time is related to
the kinematic viscosity ν in the Navier–Stokes equations in terms of ν = (τ − 0.5)c2s∆t. The rheological
equation of state for power-law non-Newtonian fluid considered in this paper is defined by (Tian et al., 2014)
ν = m (I2/2)

(n−1)/2, where m is the power-law consistency index, n is the power-law fluid behaviour index,
and I2 is the second invariant of the rate of strain tensor. Additionally, the multi-block technique developed
by Yu et al. (Yu et al., 2002) is combined with the geometry-adaptive method to enhance the computational
efficiency. The dynamic subgrid-scale eddy viscosity model proposed by Lilly (Lilly, 1992) is incorporated
into the IB–LBM solver for LES.

2.2 Heat Transfer Solver

The governing equation for the heat transfer in the fluid is given as (Abel et al., 2005)

ρcp(
∂T

∂t
+ u · ∇T ) = κ∇2T + q, (7)

where T is the temperature, cp and κ are the specific heat and thermal conductivity coefficient of the fluid,
respectively. q is the source term.

The second-order upwind scheme is used to discretize the convection term in Equation (7) explicitly, expressed
as

∂T

∂x
= 1

2∆x (3Ti − 4Ti−1 + Ti−2), u > 0 (8)

∂T

∂x
= 1

2∆x (−3Ti + 4Ti+1 − Ti+2), u < 0. (9)

A second-order internal central difference scheme is adopted for the spatial discretization on the boundaries.
The subscripts indicate the position.

The diffusion term in Equation (7) is discretized using a second-order explicit scheme, expressed as

∂2T

∂x2
=

1

∆x2
(Ti−1 − 2Ti + Ti+1), (10)

and the internal difference scheme is also used for the boundary nodes. All the discretizations of T in the y di-
rection is similar to that in the x direction. In addition, a second-order explicit scheme is used for the temporal
discretization. Therefore, the heat transfer solver has a second-order accuracy spatially and temporally, which
is consistent with the accuracy of the LBM. The heat transfer equation is also solved on the geometry-adaptive
Cartesian mesh that used for the fluid dynamics.

2.3 The IB Method for Fluid–Structure Interaction and Heat Transfer

The pIB method developed by Kim and Peskin (Kim and Peskin, 2007) is used to handle the no-slip bound-
aries between the rigid body and the fluid. The interaction force between the fluid and the structure can be
determined by the feedback law (Kim and Peskin, 2007):

F = α

∫ t

0

(U ib −U)dt+ β(U ib −U), (11)

where U ib is the boundary velocity obtained by interpolation at the IB, U is the structure velocity, and α and
β are large positive free constants. The force acting on the Lagrange structure from the ambient fluid can be
taken as a concentrated force acting on the corresponding nodes; thus, it can be added to the body force f in
Equation (6). Compared to the sharp-interface method (Tian et al., 2014; Mittal et al., 2008), the pIB method is
particularly suitable here, since in this approach all the grid points within the computational domain are treated
with a unified equation. The transformation between the Euler and Lagrange variables can be realized by the
Dirac delta function. The interpolation of velocity and the spreading of the Lagrange force to the adjacent grid
points are expressed as

U ib(s, t) =

∫
V

u(x, t)δh(X(s, t)− x)dx, (12)

f(x, t) = −
∫

Γ

F (s, t)δh(X(s, t)− x)ds, (13)
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Figure 1. Geometry-adaptive mesh strategy.

where u is the fluid velocity, X is the coordinates of structural nodes, x is the coordinates of fluid, s is the
arc coordinate, and V is the fluid domain, and Γ is the structure domain. The smooth function δh is used to
approximate the Dirac delta function. In this paper, the four-point delta function introduced by Peskin (Peskin,
2002) is used.

The heat transferred from the immersed boundary to the fluid can be written as (Ren et al., 2012)

q =

∫
Γ

Q(s, t)δh(X(s, t)− x)ds, (14)

where Q is the virtual boundary heat flux. When the temperature boundary is used, then Q can be calculated
using the penalty immersed-boundary method, expressed as

Q = αT (Tib − T0), (15)

where αT is a large factor, T0 is the boundary condition on the immersed boundary, and Tib is the temperature
of the virtual boundary, interpolated by

Tib(s, t) =

∫
V

T (x, t)δh(X(s, t)− x)dx. (16)

3 VALIDATIONS

3.1 Non-Newtonian Power-Law Fluid Flow and Heat Transfer around a Stationary Cylinder

Non-Newtonian power-law fluid flow and heat transfer from a stationary cylinder is considered to validate the
accuracy of the present numerical method in handling FSI and heat transfer. The two-dimensional power-law
fluid inlets with a uniform flow U0 over a stationary circular cylinder (of diameter D), with the computational
domain extending from (−15D,−5D) to (25D, 5D) and the cylinder located at the origin.

In order to improve the computational efficiency and validate the geometry-adaptive technique utilized in
present in-house code, four blocks are used in the simulations, as shown in Figure 1, and the most refined
mesh size of the fluid domain is D/80. The non-dimensional parameters that control this problem include the
Reynolds number (Re) and the Prandtl number (Pr), which are defined as Re = ρ0D

nU2−n
0 /m, Pr =

cpm(U0/D)n−1/κ. The drag coefficient, lift coefficient, and Strouhal number are defined as CD =
−
∑
Fx/(0.5ρU

2
0D), CL =

∑
Fy/(0.5ρU

2
0D),St = D/(U0T ), where T is the vortex shedding period, and

Fx and Fy are the horizontal and vertical components of F acting on the cylinder calculated by Equation (11).

Firstly, we consider the unsteady flow of non-Newtonian power-law flow over a cylinder at Re = 100 (at which
the flow patterns show von-Kármán periodic vortex shedding behind the cylinder) to validate the geometry-
adaptive fluid solver in terms of handling FSI problem. In order to achieve the early von-Kármán vortex
shedding, a vertical velocity perturbation is introduced into the initial inlet boundary. Four different indexes
n = 0.6, 1.0, and 1.4 are calculated. Table 1 shows the present results of St, CD,m (mean drag coefficient) and
CL as well as results from the literature. It shows that the present results agree well with these other values.

After the validation of the fluid solver in computing FSI problems involving non-Newtonian flow, we further
consider the steady flow and heat transfer around a cylinder. The average Nusselt number (Nu) used for quan-
titative comparison with the available data from the literature are defined as Nu = 1

2π

∫ 2π

0
Nu(θ)dθ, where
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Table 1. A uniform flow over a stationary cylinder at Re = 100. St: Strouhal number; CD,m: drag coefficient;
CL: lift coefficient.

n Sources St CD,m CL

0.6
Present 0.182 1.258 0.375

Patnana et al. (Patnana et al., 2009) 0.180 1.180 –
Tian et al. (Tian et al., 2014) 0.188 1.179 0.367

1.0

Present 0.164 1.415 0.349
Patnana et al. (Patnana et al., 2009) 0.164 1.341 0.325

Tian et al. (Tian et al., 2014) 0.160 1.430 0.360
Wang et al. (Wang et al., 2017) 0.161 1.450 0.310

1.4
Present 0.159 1.546 0.345

Patnana et al. (Patnana et al., 2009) 0.150 1.497 –
Tian et al. (Tian et al., 2014) 0.161 1.523 0.356

Table 2. Averaged Nusselt number (Nu) for forced convection heat transfer from a stationary cylinder to
power-law fluids at Pr = 1.0.

Re Sources n = 0.8 n = 1.0 n = 1.4

10

Present 2.089 2.038 1.973
Bharti et al. (Bharti et al., 2008) 2.123 2.060 1.973

Tian et al. (Tian et al., 2014) 2.208 2.150 2.075
Soares et al. (Soares et al., 2005) 2.116 2.058 1.973

40

Present 3.714 3.588 3.401
Bharti et al. (Bharti et al., 2008) 3.830 3.653 3.400

Tian et al. (Tian et al., 2014) 3.923 3.769 3.554
Soares et al. (Soares et al., 2005) 3.736 3.570 3.325

Nu(θ) is the local Nusselt number on the surface of the cylinder, it can be evaluated using the temperature
field according to Nu(θ) = −∂T/∂ns, where ns is the unit vector normal to the surface of the cylinder.

The average Nusselt number from the current computation along with the available data from the literature of
two Reynolds number (Re = 10 and 40) and three indexes (n = 0.8, 1.0, and 1.4) are presented in Table 2. It is
found that the present results are in good agreement with other published data. With the increase of n from 0.8
to 1.4, the average Nusselt number decreases slightly at both Reynolds numbers. Comparisons between the
Reynolds numbers of 10 and 40 show that the average Nusselt number changes more remarkably with larger
Reynolds numbers. It is because of the enhancement of the heat convection effects under the larger Reynolds
number.

3.2 Flow around a sphere at Re=10000

In this section, flow around a sphere at a Reynolds number of 10000 (Re=ρfUD/ν, where U is the inlet veloc-
ity and D is the diameter of the sphere) is considered to validate the incorporation of LES with the IB–LBM
solver. The mean drag over 100U/D is 0.41 which is close to the previous numerical result 0.39 (Constanti-
nescu and Squires, 2003) and experimental results 0.40 (Achenbach, 1972). Fig. 2 shows the power-spectral-
density of the turbulent kinematic energy measured at (3.0D, 0.6D,0). It shows that the −5/3 Kolmogorov
law is well reproduced as reported in Ref. (Xu et al., 2018), which confirms the LES model used in the present
solver.

4 BUSHFIRE MODELLING

Catastrophic bushfire that destroys the assets and multiple facilities happened many times all over the world
in the last two decades. The majority of the most damaging fires involve wind and terrain, in order to predict
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Figure 2. Power-spectral-density of the turbulent energy measured at (3.0D, 0.6D, 0).

Figure 3. Qualitative comparison of the temperature filed: present numerical results (left) and experimental
results from Ref. (Sharples and McRae, 2011).

the spread process of bushfire in various geographical and weather conditions, it is necessary to improve
understanding of the physical mechanisms of bushfire–terrain–wind interaction. Here, bushfire spread across
a lee-slope in a uniform flow is considered. The simulation is conducted at a Reynolds number of 10000
and Richard number of 0.5. A qualitative comparison of the current result and that from Ref. (Sharples and
McRae, 2011) is presented in Fig. 3. The results show that that the slope plays an important role in the bushfire
spread. Specifically, the heat spreads to the two sides across the top of the slope, which will certainly induce a
fast bushfire spread along the ridge of the slope. This phenomenon is well captured by the present numerical
method, which agrees with the observation in the experiment.

5 CONCLUSIONS

A hybrid immersed boundary–lattice Boltzmann and finite difference method is proposed for the bushfire
simulation. The integration of spatial adaptivity, thermal finite difference method, and fluid flow immersed
boundary-lattice Boltzmann method is validated by flow around a circular cylinder in power-law fluid, heat
convection around a circular cylinder in a uniform flow and flow around a sphere at Re=10000. A demon-
stration considering bushfire–wind–terrain interaction is also presented. The further study on bushfire–wind–
terrain interaction will be presented in the future.

By using an immersed boundary method, the present numerical method has a superiority in handling complex
and moving boundaries, which makes it potentially applicable for many other related engineering problems,
such as building ventilation and battery cooling. Incorporating wall model into the present method is a future
work to make it more efficient for high Reynolds number problems.
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