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Abstract: The Defence Science and Technology Group, as part of their Modelling Complex Warfighting
Strategic Research Investment, has been developing a prototype simulation depicting joint warfighting. The
Joint Future OpeRating Concept Explorer (JFORCE) is an agent-based, stochastic simulation, where the pa-
rameters define the physical attributes of the entities, control their behaviour, or define a particular scenario.
The Design of Experiments (DOE) is a structured investigation through this high-dimensional parameter-space
and the simulation’s stochastic response in order to support a particular analytical objective. Characterising the
form and strength of the sensitivity of the simulation’s response to changes to factor settings can provide in-
sight into sub-system/attribute contributions to joint warfighting operational effectiveness and the trade-space
between them. This paper sets out to highlight two of the more common pitfalls analysts might face when
conducting such a sensitivity analysis of stochastic simulations.

Regression fits a model ŷ(x, β̂) where the coefficients β̂ (which reflect the sensitivity of the parameters) are
chosen to make the model close to the simulation response at a number of user-specified design points and
replications. A very common choice is to consider a baseline scenario and other scenarios where only one
parameter is changed at a time. This One Factor At a Time (OFAT) design intuitively makes sense, but it’s a
trap for new players. The second issue is that some regression software generally assume that the simulation
responses at the design points are independent and identically distributed (iid), which allows the analysis to be
conducted using common (and simpler) Analysis of Variance (ANOVA) procedures. But for simulations that
employ common random numbers the assumption of independence is not met (by design) and the assumption
of identically distributed simulation responses at each of the design points can often be found wanting. The
aim of this paper is to convince the reader to avoid the temptation to use OFAT designs and to be cautious
when using DOE software that rely on iid assumptions.

Now, one should consider the fitted regression coefficients as a point estimate of a random variable B̂, which
ideally should have the properties of minimum bias (min |E[B̂]− β|) and maximum precision (min var[B̂]).
A simple example using the JFORCE simulation will hopefully be sufficient to demonstrate the negative
implications of relying on OFAT designs and/or iid assumptions. First, it will be shown that the OFAT design
contains more bias than an equivalent sized superior design, as well as suffering false negatives (two of three
sensitive parameters were not picked up as such). Secondly, even when using this superior design, the iid
assumptions will be shown to either under-estimate or over-estimate the regression coefficient confidence
intervals, potentially causing false positives (claiming a sensitive parameter when it is not).

The first pitfall (OFAT design) can be avoided if one reads just about any text on DOE. However, one of the
classic texts, and some DOE software packages, still espouse the use of traditional ANOVA, thus making
avoiding the second pitfall (iid assumptions) less easy for practitioners. This paper, by detailing the required
mathematical formulation and illustrating through a small but typical example, potentially offers a useful path
forward.
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1 INTRODUCTION

The Defence Science and Technology (DST) Group, as part of their Modelling Complex Warfighting Strategic
Research Investment, has been developing a prototype simulation depicting joint warfighting. The Joint Future
OpeRating Concept Explorer (JFORCE) is an agent-based model written in the NetLogo language, and is thus
a closed-loop, stochastic simulation, where the parameters of the model define the physical attributes of the
entities, control their behaviour, or define a particular scenario in which the warfighting is taking place (Au
et al. (2018)).

Experimental design is a structured investigation through this high-dimensional parameter-space and the sim-
ulation’s stochastic response in order to support a particular analytical objective. Thus, design and analysis
go hand-in-hand. There are several distinct analytical objectives that are of practical interest in the use of
JFORCE:

• From all of the parameters of the simulation which may affect its response, identify only the subset that
significantly affect it (significance here may be both statistical (is the effect greater than zero) and prac-
tical (is the effect greater than an indifference threshold)). This is motivated by the parsimony principle
(or Occam’s Razor) which has often been observed anecdotally. This Factor Screening objective can
be tackled using specially crafted experimental designs, such as sequential bifurcation (Bettonvil and
Kleijnen (1997)).

• Identify the combination of parameter settings that optimise the simulation’s response. In joint warfight-
ing this might seek the behavioural parameter values governing tactics that maximises the Blue Force
probability of winning. This Simulation Optimisation objective is often approached using a response
surface methodology (Myers et al. (2016)).

• Characterise the form and strength of the sensitivity of the simulation’s response to changes to factor
settings. This Sensitivity Analysis objective often occurs after Factor Screening and can provide insight
into sub-system/attribute contributions to joint warfighting operational effectiveness and the trade-space
between them, often by employing generalised linear regression (Dunn and Smyth (2018)).

It is this third analytical objective that this paper will explore. The intent is to expose the reader to two
common pitfalls that analysts may encounter when performing Sensitivity Analysis - sometimes through no
fault of their own - and to provide details of effective remedies. A simple example using JFORCE will be used
for illustration, and it is hoped that this paper contributes to the conversation amongst the design of experiment
(DOE) community both at DST Group and further abroad. In particular, an explicit mathematical formulation
for the characterisation of the bias and precision of estimated regression coefficients, as a function of a general
design and without the typical simplifying assumptions, is provided and its application demonstrated.

2 SENSITIVITY ANALYSIS AND ORDINARY LEAST SQUARES REGRESSION

Let xi = (1, xi1, xi2, . . . , xiq) denote the i−th design point (combination of level settings of the q parameters)
and let yir denote the simulation’s response at the i−th design point and for the r−th replication (remembering
that the simulation contains stochastic processes). Regression fits a model ŷ(x, β̂) whereby the regression
coefficients β̂ = (β̂0, β̂1, β̂2, . . . , β̂q)

T are chosen to make the model close to the simulation response yir, r =
1, . . . ,M at each of the design points xi, i = 1, . . . , N .

While non-linear functions of the q simulation parameters (e.g., x2j or xjxk) can easily be included (by simply
defining them as new parameters and increasing the value of q), for ease of illustration attention will be
restricted to a main effects model ŷ(x, β̂) = xβ̂.

The matrix X = (x1,x2, . . . ,xN )T is called the design matrix and in Ordinary Least Squares (OLS)
regression, the model’s predicted values ŷ = Xβ̂ are made close to the simulation average responses
ȳ = (ȳ1, ȳ2, . . . , ȳN )T where ȳi =

∑M
r=1 yir/M by minimising (ȳ − ŷ)T (ȳ − ŷ) which results in the

so-called normal equations XTXβ̂
OLS

= XT ȳ so that β̂
OLS

= (XTX)−1XT ȳ.

Thus, given a design matrix X, there exists an equation which estimates the best regression model (best here
in the sense of minimising the sum of the squares of the residuals, other definitions of best exist as well). This
leads to the natural question of whether there is a best design matrix? This is where the first common pitfall
often arises.
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2.1 JFORCE SCENARIO

A scenario developed in JFORCE examined the military value of information in a fictitious, geographically-
symmetrical scenario. Jets were tasked with the mission of destroying land targets but could engage other
(enemy) jets if within sensor range or cued in via a Cooperative Engagement Capability (CEC) system, while
other assets could target the jets if within both sensor and weapon ranges. These agent behaviours were
controlled by fairly simplistic rules. Further details can be found in Au et al. (2018).

To illustrate the first pitfall the sensitivity of the JFORCE simulation’s response to just three parameters (q = 3)
related to Blue Force’s capability will be explored. These are the number of Blue jets (x1), the speed of the
Blue jets (x2) and whether Blue has its CEC system turned on (x3). While it is likely that the complexity of
having multiple entities and the scenario environment may mean that other (perhaps many other) parameters
equally affect the simulation’s response, we focus on just these three for illustration purposes.

The minimum and maximum values of the considered ranges of these parameters are linearly scaled to −1
and +1 as follows: x1 = [10, 15], x2 = [1500 km/h, 2000 km/h], x3 = {FALSE,TRUE}. The simulation’s
response of interest (y) is the fraction of Blue jets remaining, so JFORCE was replicated one hundred times
(M = 100) and the average response used. Again, for ease of illustration, a main effects-only model will be
considered, so that ŷ(x, β̂) = xβ̂ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3.

2.2 ONE FACTOR AT A TIME DESIGNS

Now OLS regression is in fact just a numerical curve fitting procedure, so having four parameters to estimate
implies (at least) four design points (N = 4). A very common choice is to consider a baseline scenario and
the scenarios where only one parameter is changed at a time. This One Factor At a Time (OFAT) design
intuitively makes sense, as the parameter sensitivities β̂j , j = 1, 2, 3 can actually be estimated by comparing
each simulation response with the baseline (and avoiding the need for calculating matrix inverses). Thus x1 =
(1,−1,−1,−1),x2 = (1, 1,−1,−1),x3 = (1,−1, 1,−1),x4 = (1,−1,−1, 1) and for these design points
100 replications of JFORCE resulted in ȳ = (0.305, 0.259, 0.157, 0.325)T . Applying the OLS equations
results in the estimated regression model ŷ(x, β̂) = 0.218− 0.023x1 − 0.074x2 + 0.010x3.

Relative to the baseline scenario, which has an estimated fraction of Blue jets remaining of 30.5%, the esti-
mated effects of the three Blue attributes can be clearly seen. Increasing the number of Blue jets (from 10
to 15) decreases the fraction of Blue jets remaining by an estimated 4.6%, while increasing the speed of the
Blue jets (from 1500 km/h to 2000 km/h) decreases the fraction of Blue jets remaining by an estimated 14.8%.
Finally, the estimated effect of Blue turning its CEC system on is to increase the fraction of Blue jets remaining
by an estimated 2%. Analysts might use this information to advise decision-makers on the relative merits of
differing capability options.

So where is the pitfall alluded to? Well, the analyst should first be asking him/herself the questions is −0.023
(or −0.074 or 0.010) statistically different to 0? That is, are the effects real or are they an artefact of the
stochastic nature of the simulation. Secondly, the analyst should be wary of the choice of a main effects-
only regression model, and should be asking are the estimated effects due solely to the parameters explicitly
modelled?

These questions call for the consideration of the regression coefficients β̂ as random variables and the asso-
ciated properties of bias and precision, and it is here that the OFAT design proves wanting. While the DOE
literature does discuss limitations with OFAT designs (e.g., Law (2007), Montgomery (2012), Kleijnen (2015))
they do so without considering equal sized designs (making efficiency comparisons harder), nor the impact on
bias or hypothesis testing (making accuracy comparisons harder). The JFORCE example in this paper will
provide a clearer illustration of these aspects.

3 REGRESSION COEFFICIENTS AS RANDOM VARIABLES

In the example above, the estimated regression coefficients were based on the mean simulation response from a
sample ofM = 100 replications (for each of the design points). If another sample ofM replications were pro-
duced, then one might expect to obtain different estimates, as the sample means would likely differ. This sug-
gests that one should consider β̂

OLS
as a point estimate of the random variable B̂ = (XTX)−1XT Ȳ. Ideally,

this B̂ should have the properties of minimum bias (min |E[B̂] − β|) and maximum precision (min var[B̂]).
The question now is how does the design matrix X affect bias and precision?
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The fact that OLS regression has coefficients which are linear functions of random variables (the mean re-
sponse Ȳ) makes this possible. If the true model is Ȳ = Xβ+ X̃β̃+ζ (with E[ζ] = 0) where β̃ is the vector
of simulation parameters not included in the regression model (here it would consist of all the interaction
terms xixj and xixjxk,∀i < j < k ∈ {1, 2, 3}) and where X̃ is composed by multiplying the corresponding
columns in X according to the entries in β̃ then:

E[B̂] = (XTX)−1XTE[Ȳ] = (XTX)−1XT
(
Xβ + X̃β̃ + E[ζ]

)
= (XTX)−1XTXβ + (XTX)−1XT X̃β̃ = β +Aβ̃

whereA = (XTX)−1XT X̃. MatrixA is known as the alias matrix, as it not only quantifies the amount of bias
in the regression estimate, but more importantly it indicates which other parameter(s) might be contributing
some effect to the sensitivity of the simulation’s response (but not explicitly modelled). For the OFAT design
with β̃ = (β12, β13, β23, β123)T , the alias matrix is:

A =




4 −2 −2 −2
−2 4 0 0
−2 0 4 0
−2 0 0 4




−1 
1 1 1 1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1




1 1 1 −1
−1 −1 1 1
−1 1 −1 1

1 −1 −1 1

 =


−1 −1 −1 2
−1 −1 0 1
−1 0 −1 1

0 −1 −1 1


so (for example) E[β̂1] = β1 − β12 − β13 + β123. What this means is that (on average) the estimate for
the effect of the number of Blue jets is equal to the true effect minus the effects of the two-way interactions
between the number of Blue jets and the Blue jet speed and between the number of Blue jets and the Blue CEC
system, plus the effect of the three-way interaction between all three parameters.

Now it is possible that these interactions are not strong (as assumed) and it is generally the case that the higher
the order of the interaction the weaker its effect size is. But a design that generates a sparse alias matrix A
with small-magnitude non-zero entries would be preferred.

The linearity of the OLS regression coefficients also allows the covariance function for B̂ to be explicitly
derived. Using the bi-linearity property this can be written as Σ[B̂] = (XTX)−1XTΣ[Y]X(XTX)−1/M.
Ideally, we want the entries in the covariance matrix to be small (specifically the diagonal entries) as they
control the width of the confidence intervals associated with each of the regression parameters. The common
assumption is that Y are independent and identically distributed (iid) random variables in which case Σ[Y] =

σ2I (where σ2 is the population constant variance) and the covariance matrix for B̂ simplifies to Σ[B̂] =
σ2

M (XTX)−1. Some simple matrix calculations shows that for the OFAT design:

(XTX)−1 =


1 1/2 1/2 1/2

1/2 1/2 1/4 1/4
1/2 1/4 1/2 1/4
1/2 1/4 1/4 1/2


so that var[B̂] = diag(Σ[B̂]) = σ2

M (1, 0.5, 0.5, 0.5)T . So the variance of the estimates of the three parameter
effects are equal and half that of the constant in the regression model. Whether that is a good result will be
examined next.

4 FRACTIONAL FACTORIAL DESIGNS

While the OFAT design has an intuitive appeal, it is not the best design. While the simple example above
doesn’t require it, it should be apparent that OFAT has no possibility of estimating interactions should such a
regression model be sought. But even for main effects-only models, an alternative design of the same size can
be found which has better properties in terms of bias and precision.

For the simple example above, this alternative design only requires replacing the first design point (our baseline
scenario) with x1 = (1, 1, 1, 1). The JFORCE simulation returned ȳ1 = 0.341 over the 100 replications. The
matrix equations for the point estimates, bias and precision can be used to see what effect this simple change
has. Now the estimated regression model becomes ŷ(x, β̂) = 0.270 + 0.029x1 − 0.022x2 + 0.062x3 which
suggests quite different effects of the Blue force characteristics. Here, the largest predicted effect is when Blue
turns its CEC system on (fraction of Blue jets remaining increasing by 12.4%) and the effect of the number of
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Blue jets is in the opposite direction from that predicted by OFAT. For bias, the alias matrix is:

A =




4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4




−1 
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




1 1 1 1
−1 −1 1 1
−1 1 −1 1

1 −1 −1 1

 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


so for example E[β̂1] = β1 + β23. Here the estimate for the effect of the number of Blue jets is equal to
the true effect plus only the effect of the two-way interaction between the Blue jet speed and the Blue CEC
system. Compared with the aliasing associated with the OFAT design, which had three confounding effects,
this is clearly better. The same is true for the other regression coefficients.

Regarding precision, this alternative design yields Σ[B̂] = σ2

4M I (note: XTX is a diagonal matrix and easily

invertible), thus var[B̂j
OFAT

] = 2 ∗ var[B̂j
ALT

], j = 1, 2, 3. Compared with the OFAT design, confidence
intervals for the regression coefficients with this alternative design should be around 40% smaller. For the
simple example above, the 95% confidence intervals based on the OFAT design (the population variance can
be estimated from the sample variance, so σ2 ≈

∑4
i=1 s

2
i /4 = 0.0412) suggest that only the Blue jet speed

significantly affects the fraction of Blue jets remaining.

However, the smaller confidence intervals associated with the alternative design (with σ2 ≈ 0.0473) actually
allows concluding that all three parameters are significant. This variance inflation property of OFAT designs
risks making more false negatives (i.e., misidentifying a significant effect, therefore reducing the power of the
test) than is necessary.

Hopefully, this simple example is sufficient to convince the reader of the sub-optimal properties (increased
bias and reduced precision) of the intuitively popular design choice of OFAT, and in fact, the relative reduction
in precision gets worse as the number of parameters grows (Montgomery (2012, chapter 5.2)). What then is
this alternative design, and how can it be constructed in the general q parameter setting?

The above alternative design is actually a two-level fractional factorial design. One characteristic of these
designs is their resolution which denotes their ability to reduce the bias in the estimated regression coefficients
(the higher the resolution the better). Resolution V fractional factorials (for reduced bias), augmented with
centre points (for modelling non-linearity) are popular designs. Thankfully, many text-books explain fractional
factorial designs, and one of the most popular is Montgomery (2012). Unfortunately, the popularity of this
text, and of commonly used regression software packages, may be where the second common pitfall often
arises.

5 ANALYSIS OF VARIANCE BASED REGRESSION (‘CLASSIC’ DOE)

The issue is that both Montgomery (2012) and common regression software (e.g., Minitab and JMP) seem to
generally assume that the simulation responses at the design points are iid, as this allows the analysis of the
regression coefficients to be conducted using common (and simpler) Analysis of Variance (ANOVA) proce-
dures. While this does simplify the calculations required, as noted above the linearity of the OLS regression
does allow the covariance matrix to be explicitly written (see Section 3.2).

So for the design and analysis of simulation experiments, are the iid assumptions likely to be violated, and
what effect does this have on the regression coefficient confidence intervals?

Considering independence first, for simulations that employ common random numbers (CRN) the assumption
of independence of the simulation’s responses at the design points is not met (by design). CRN can be an
effective variance reduction technique (VRT) that assists in multiple comparison statistical tests of alternative
options, is helpful in the debugging phase of simulation scenario development, and is the default setting of the
combat simulation used in the author’s branch of DST. While ANOVA may still be applicable (CRN are a form
of blocking, which can be added as an explicit parameter) it would only address one of the two assumptions.

As for the assumption of identically distributed simulation responses at each of the design points, Law (2007)
discusses examples where the ratios of largest to smallest variance exceed an order of magnitude. For the
simple JFORCE example, CRN do cause covariance between the responses at different design points and the
response variance is not constant across the design space.

The resultant estimated covariance matrices for the regression coefficients using the fractional factorial design,
and assuming iid or not, can be calculated and the variances extracted from the diagonals. This produces
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var[B̂iid] = (1.18 × 10−4, 1.18 × 10−4, 1.18 × 10−4, 1.18 × 10−4)T and var[B̂] = (1.28 × 10−4, 1.33 ×
10−4, 1.17× 10−4, 9.00× 10−5)T which means that var[B̂iid]/var[B̂] = (0.92, 0.89, 1.01, 1.31)T .

Note that the estimated variance for each regression coefficient is constant, meaning that each confidence
interval will have the same (half) width - this is also known as Fisher’s Least Significant Difference. Thus the
confidence intervals for the regression coefficients would be either under- or over-estimated if one simply used
the common iid assumptions.

While this doesn’t produce a ‘gotcha’ moment for this simple main effects-only example (i.e., all simulation
parameters are classified as significant in both cases), it should be noted that in a larger regression model
incorporating interactions between parameters, one two-way interaction (between the number of Blue Jets and
the Red Force CEC system) was incorrectly classified as being a significant influence on the fraction of Blue
Jets remaining when the iid assumptions were used (a false positive).

6 KLEIJNEN-LAW REGRESSION (‘MODERN’ DASE)

Hopefully by now the reader will have been convinced of two things - that OFAT designs should be replaced by
a proper DOE, and that iid simulation responses need not be assumed. While Montgomery (2012) is perhaps
the seminal text on what could be described as classical DOE, it is perhaps the lesser known Kleijnen (2015)
which is the seminal text on simulation DOE, where the above remedies to violations of the iid assumptions
(and others) are described. However, recent research by one of the authors of Gill et al. (2018) regarding
Professor Kleijnen’s text is worth repeating here, as it may assist analysts in following the procedures contained
within.

First, it is possible that the analyst might wish to use a different number of replications at each design point
(Mi 6= M, i = 1, . . . , N ) perhaps motivated by the differing variability noted above. While Kleijnen (2015)
treats the cases of constant and non-constant number of replications separately, the OLS normal equations
can in fact be generalised to XTMXβ̂

OLS
= XTMy where M is an N × N diagonal matrix with entries

Mii = Mi.

Second, when CRN are used (which does require a constant number of replications), in an effort to avoid
having to estimate the full N × N covariance matrix Σ[Y], Kleijnen (2015) proposes a remedy initially
suggested in a seminal text on simulation modelling (Law (2007)). The very simple idea is to compute a
point estimate β̂r = (XTX)−1XTyr for each replication r = 1, . . . ,M , where yr = (y1r, y2r, . . . , yNr)

T

from which the sample means and sample variances are used to construct the associated confidence intervals.
However, it turns out that due to the linearity of the regression coefficient estimators, this ‘alternative’ approach
is in fact identical to that described above.

Third, the other assumption often challenged by combat simulation response data is that of normality. When
this is the case, an approach suggested by Kleijnen (2015) is to use jackknifing. There, the r-th jackknifed
pseudovalue (a weighted difference of the OLS estimators based on the simulation response averaged over all
M replications and the simulation response averaged over all replications excluding the r-th) is computed for
each replication, and the sample means and variances of these pseudovalues are used to construct the confi-
dence intervals. However it is relatively easy to prove that this jackknifing is also identical to that described
above.

Finally, I have not yet commented on how to determine how accurate the fitted OLS regression model is. One
might be able to use the estimated confidence intervals for the fitted regression coefficients as a guide (i.e.,
how close they include the value zero perhaps). But there is a better way, by using the so-called lack-of-fit
F-statistic.

In the iid case, a ratio of two different estimates of the population variance σ2 is used, one based on the
fitted regression model (numerator) and one which doesn’t (denominator). If the regression is a poor fit, the
numerator will increasingly overestimate the population variance, i.e., larger values of the ratio. A statistical
assessment of the regression fit can then be made against the critical value from the F -distribution with N − q
and N(

∑N
i=1Mi − 1) degrees of freedom.

In Gill et al. (2018) I claimed that Kleijnen (2015) was incorrect, in that his numerator ‘represented the sum of
weighted squared average residuals, and as such, risks some residuals cancelling each other out in the calcu-
lation of the average residual at each design point and therefore underestimating the Mean Squared Residual
(MSR)’ and ‘risks suggesting an adequate regression when it may not be so’.

Technically, the first part of the claim regarding the MSR is correct. However, it is not the MSR that
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should be the numerator. As Montgomery (2012) points out, one can show that:
∑N
i=1

∑Mi

r=1 (yir − ŷi)2 =∑N
i=1

∑Mi

r=1 (yir − ȳi)2 +
∑N
i=1Mi (ȳi − ŷi)2 and while the LHS is the (correct) MSR, it is the ratio of the

(correctly scaled into Mean Squares) terms on the RHS, which measure pure-error and lack-of-fit, which is the
correct lack-of-fit F -statistic (as both approximate the population variance). So, the correct equation (as given
in (2.30) of Kleijnen (2015)) is:

FN−q,N(
∑N

i=1Mi−1) =

∑N
i=1

∑Mi

r=1(ȳi − ŷi)2/(N − q)∑N
i=1

∑Mi

r=1(yir − yi)2/(N(
∑N
i=1Mi − 1))

.

7 CONCLUSIONS

This paper set out to highlight two of the more common pitfalls analysts might face when conducting a Sen-
sitivity Analysis of stochastic simulations. The aim was to convince the reader to resist the temptation to use
OFAT designs and to be cautious when using DOE software that rely on iid assumptions.

A simple example using a combat simulation in development by DST Group was hopefully sufficient to
demonstrate the negative implications in terms of bias or precision of failing to do so. It was shown that
the OFAT design contained more bias than an equivalent-sized fractional factorial design, and suffered more
false negatives. When using the fractional factorial design, the iid assumptions were shown to either under-
estimate or over-estimate the size of the regression coefficient confidence intervals, potentially causing a false
positive.

The first pitfall (OFAT design) should be avoided if one reads just about any text on DOE. However, one of
the classic texts on DOE (Montgomery (2012)), as well as some DOE software packages, espouse the use of
traditional ANOVA, thus making avoiding the second pitfall (iid assumptions) less easy.

The simulation focussed text on DOE (Kleijnen (2015)) and classic text focussed on simulation (Law (2007)),
along with the author’s recent modest contribution (Gill et al. (2018)), potentially offers a useful path forward,
in particular, the explicit mathematical formulation for the characterisation of the bias and precision of esti-
mated regression coefficients as functions of a general design and without the typical simplifying assumptions.
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