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Abstract:  Traditional combat models such as the Lanchester model are typically limited to two competing 
populations and exhibit either exponential growth or decay solutions. Although these early models were well 
suited to the type of warfare in the early twentieth century, they are no longer as directly applicable to the 
complex modern military operating environment. Despite these shortcomings, the Lanchester model was used 
in the Operations Research of Force Design even in World War II, as evidenced in the classic work 
Methods of Operations Research of Morse and Kimball [1950]. Our work seeks to enrich such models to 
account for modern and future complexities, particularly around the role of inter-agency engagement in 
operations.

To this end, we account for the presence of civilian or non-combatant populations, which have long been an 
unfortunate part of the combat setting as they are directly impacted by the warfare surrounding them. Typically 
this non-combatant group consists of the host population in the space where combat occurs. The other type of 
non-combatant groups, a development since the 19th century and with ongoing evolution today, are agencies, 
be they governmental or non-governmental, that undertake work in conflict e nvironments t o s upport local 
populations. Depending on whether they are governmental or otherwise, these agencies have a range of formal 
and informal relationships with both sides of the conflict. As the agency non-combatant populations play no 
direct role in combat, their interactions with the two combatant forces are well suited to be modelled through 
the recent developments in non-trophic ecological models.

The networked non-trophic ecological model is one of the most recent developments in ecological modelling 
that incorporates a great number of positive and negative interactions, both trophic (consumptive) and non-
trophic (non-consumptive), between multiple species in a “multiplex” network. In a similar manner in which 
the Lanchester combat model can be viewed as an adaptation of the Lotka-Volterra model for two species in a 
predator-prey relationship, the networked non-trophic ecological model can be exploited as a viable represen-
tation of modern combat in which non-combatant groups exist.

The combat model presented in this paper provides a global representation of asymmetrical combat between 
two forces in the modern setting where non-combatant populations are present. In our model, the non-
combatant population is present as a neutral agency supporting the native population to the extent that they are 
non-combatants, but where there can be leakage from this group to the insurgent fighting f orce. Correspond-
ingly, the opposing intervention force is under obligations to enable an environment where the neutral agency 
may undertake its work. A key result of our model is that, in contrast to the typical exponential growth or 
decay solutions of the Lanchester system, with the inclusion of a third group limit cycles and bifurcations can 
now occur which we interpret in light of the warfighting application of the model.
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1 INTRODUCTION

The Lanchester equations for combat [Lanchester, 1916; Taylor, 1983] were proposed in 1916 as a compact
mathematical representation for the engagement between two opposing forces. The tragic irony is that, as
a model of unmoving undifferentiated forces, they were uniquely suited to the stalemate, mud and trench
bound slaughter of the years around which they were published, as evidenced by the Battle of the Somme.
With some novel adaptation, the equations have remained a tool of interest in Operations Research [Lin and
MacKay, 2014; MacKay, 2015], even in the more dynamic circumstances of World War II [Lucas and Turkes,
2004; Hung et al., 2005]. Modern warfare, in contrast, has increased in complexity – with concepts such
as manoeuvre, networked communications systems, and the presence of non-combatant groups in the opera-
tional environment. This increase in complexity has driven recent developments in the literature to advance
the Lanchester equations e.g. multiple combatants [Kress et al., 2018], geographically distributed combat in-
teractions [McLemore et al., 2016], and network centric warfare [Kim et al., 2017] to name but a few. This
paper will present a new approach to modelling the presence of non-combatant groups, drawing upon recent
developments in ecological systems modelling [Fontaine et al., 2011; Kéfi et al., 2012, 2016].

The Lanchester equations are an adaptation of the Lotka-Volterra model for two species in a predator-prey, or
trophic relationship. This is the simplest model of an ecological system that is straightforwardly generalised
to multiple species in, for example, a food web. However, as increasingly recognised, some species in an
ecological network play no trophic role at all – are neither preyed upon, nor prey others. Rather, they reside
in niches amongst other foraging species, facilitating the growth of one or another element [Kéfi et al., 2012;
Fontaine et al., 2011; Berlow et al., 2004; Melián et al., 2009; Mougi and Kondoh, 2012; Gross, 2008]. In
the modern military operating environment there are also such entities. Above all, there is the host population
in the operational environments where, in recent conflicts, external armed forces have confronted each other;
Afghanistan is a case in point. The other type of non-combatant group are agencies, be they governmental (aid
agencies of Departments of State or Foreign Affairs) or non-governmental (Red Cross/Crescent or Médecins
Sans Frontiéres), that undertake work in conflict environments to support local populations. Depending on
whether they are governmental or otherwise, these agencies have a range of formal and informal relationships
with both sides of the conflict: with formal military organisations who are obligated to guarantee them pro-
tection [Office for the Coordination of Humanitarian Affairs, 2007] or provide logistics support [Australian
Agency for International Development, 2011]; and with armed insurgents on, the other side, who seek to ex-
ploit the ambiguities around ‘unprivileged combatants’ [Sassoli et al., 2011; Lewis et al., 2015] to blend in and
out of the very population to which these agencies provide assistance.

In this paper we draw upon these recent representations of non-trophic interactions in ecology to model such
non-combatant support agencies in modern operational environments. The broader goal is to enrich available
force design models to account for such present and future environments with high inter-agency complexity.
We present a simple characteristic scenario and explore the types of dynamic behaviours that arise when such a
third group, labelled ‘Green’, is inserted into the classic Blue-on-Red models in the so-called Blue-Green-Red
(BGR) model. Using two scenarios of equal and unequal forces, in contrast to the typical exponential growth
or decay solutions of the Lanchester system, with a third group now limit cycles and bifurcations can occur
which we interpret in light of the warfighting application of the model.

2 NON-TROPHIC INTERACTIONS IN THE BGR COMBAT MODEL

Recent developments in ecological modelling have placed a focus upon the incorportion of non-trophic inter-
actions in the study of complex ecological networks [Fontaine et al., 2011; Kéfi et al., 2012, 2016]. These
non-trophic interactions, commonly categorised as either positive or negative, represent a range of diverse
interactions between species that extend well past the commonly modelled interactions considered in typical
Lotka-Volterra models [Brauer et al., 2001]. Some examples of positive non-trophic interactions are improved
recruitment, refuge provisioning, and increased survival. In the case of negative non-trophic interactions some
examples are competition for space, predator interference, and increased mortality [Kéfi et al., 2016]. In this
work we seek to exploit this non-trophic framework as a representation of warfare through the formulation of
a combat model that generalises the typical Lanchester combat model [Lanchester, 1916; Taylor, 1983]. Prior
work has explored ideas from ecological modelling in the Lanchester combat model through logistic growth
[Syms and Solymar, 2015] and multiple populations [Feichtinger et al., 1996]. Our work thus builds on this in
enriching the variety of interactions available in ecological modelling for warfare modelling.

Our combat model is based upon the work done by Kéfi et al. [2016] and the bioenergtic consumer-resource
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models in Brose [2008]; Yodzis and Innes [1992]. In this model we explore a specific example of a global
BGR model that highlights the asymmetries present in a potential combat scenario between an external inter-
vention force Blue (B) and an insurgent/native force Red (R). Here Green (G) is present as a neutral agency
supporting, or facilitating, the local population to the extent that they are non-combatants, but where there can
be leakage from this group to the Red fighting force. Correspondingly, Blue is under external obligations to
enable an environment where Green may undertake its work.

The dynamics of this asymmetric combat between Blue and Red is given by the following system

Ḃ = r∗BB

(
1− B

KB

)
− FRBR− xBB,

Ṙ = r∗RR

(
1− R

KR

)
− FBRB − x∗RR,

Ġ = r∗GG

(
1− G

KG

)
− x∗GG,

(1)

where B, R, and G are the sizes of the Blue, Red, and Green forces/populations respectively. Recruitment
occurs through a logistic growth term with a carrying capacity K(·) for each population. Here the non-trophic
interactions (typically denoted through the superscript (*) here) in the improved recruitment rates are given by

r∗B = rBf(R), r∗R =
rR + rmaxRG

1 +G
, r∗G =

rG + rmaxGB

1 +B
, (2)

where r(·) is the intrinsic recruitment rate for each population and rmax(·) is the maximum recruitment rate in
the presence of facilitators. In this formulation we have included the function f(R) in the improved recruitment
rate of the Blue force. The function f(R) accounts for the phenomenon that Blue’s recruitment strategy would
be dependent on the size of the Red force. As an example we might choose f(R) such that f(0) = 0 and
f ′(R) > 0, thus in the absence of a red force, Blue has no need to recruit and thus its force size will gradually
diminish in time due to the attrition solely driving its dynamics. In the presence of Red force, the level of
recruitment will be driven by the size of the Red force. A couple of examples for the choice of f(R) are
f(R) = tanh(αR) and f(R) = αR

1+αR , where α can be viewed as a surge rate parameter. Combat between
Blue and Red is described through the so-called functional response of combat, similar to that of the functional
response of predation in ecological models [Holling, 1959] , and is given by

FRB =
wRbRBB

1+q

1 + wRtRbRBB1+q
, FBR =

wBb
∗
BRR

1+q

1 + wBtBb∗BRR
1+q

, (3)

where bij is the intrinsic attack rate of i upon j, w(·) can be interpreted as an engagement rate to account
for the fact that a force has to divide its attention amongst adversaries and is given by 1/(no. adversarial
engagements), and t(·) can be viewed as the combat engagement time that accounts for a force searching for
and then engaging with its adversary, and the Hill coefficient q ∈ {0, 1} yields type II and type III responses
respectively [Holling, 1959]; essentially the larger the value of q the sharper the saturation of F to its maximum
value. Observe that for small b∗BR, FBR scales as b∗BR, however for large values, FBR ≈ 1/tB . In other words,
for increasingly large fire-rate the functional response is only as good as the time it takes to find targets. This
will be important in the following. The non-trophic interaction through the Green in the functional response
occurs through refuge provisioning for Red and modifies the attack rate of Blue upon the Red as follows

b∗BR =
bBR + bminBR

G

1 +G
, (4)

where bminBR
is the minimum attack rate of Blue upon Red in the presence of Green.

The last term in the system equations can be viewed as an intrinsic decay term that might cover combat fatigue,
cost of engagement and non-combat casualties etc. The intrinsic decay rates with non-trophic interactions are:

x∗R = xR −
(xR − xminR

)G

1 +G
, x∗G = xG −

(xG − xminG
)B

1 +B
+

(xmaxG
− xG)R

1 +R
, (5)
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where x(·) is the intrinsic decay rate and the parameters xmin(·) and xmax(·) are the minimum and maximum
decay rates in the presence of facilitators and competitors respectively.

3 LIMIT CYCLES AND BIFURCATIONS IN THE BGR COMBAT MODEL

Parameter Description Scenario 1 Scenario 2
rB Intrinsic recruitment rate of Blue 3 3
rR Intrinsic recruitment rate of Red 1 1
rG Intrinsic recruitment rate of Green 1 1

rmaxR
Maximum recruitment rate of Red 2 2

rmaxG
Maximum recruitment rate of Green 2 2

KB Carrying capacity of Blue 10 20
KR Carrying capacity of Red 10 10
KG Carrying capacity of Green 10 10
wB Engagement rate of Blue 1 2
wR Engagement rate of Red 1 1
tB Engagement duration of Blue 1 0.5
tR Engagement duration of Red 1 1
bRB Red to Blue fire rate 1 1

bminBR
Minimum Blue to Red fire rate 0.1 0.2

q Hill coefficient 0 0
xB Intrinsic decay rate of Blue 0.5 0.25
xR Intrinsic decay rate of Red 0.5 0.5
xG Intrinsic decay rate of Green 0.25 0.25
xminR

Minimum decay rate of Red 0.25 0.25
xminG

Minimum decay rate of Green 0.125 0.125
xmaxG

Maximum decay rate of Green 0.75 0.75
α Blue recruitment surge 1 1

Table 1. List of parameters, their descriptions and their default values 
for the two toy scenarios. The difference in parameters between the two 
scenarios is highlighted in boldface.

The initial numerical study of our
combat model in Eq.(1) consists
of two different scenarios. These
are entirely fictitious but sufficiently
general to capture the diversity of
behaviours of the model. The
first scenario, denoted as Scenario
1, represents roughly parametrically
equal Blue and Red forces fight-
ing in the asymmetric system and
the second scenario, denoted as Sce-
nario 2, represents parametrically
unequal forces where a technolog-
ically superior Blue force engages
with an inferior Red force. Here the
superiority of Blue is represented
through an improved carrying ca-
pacity, improved engagement and
minimum fire rates, a shorter en-
gagement time, and decreased in-
trinsic decay rate. The parameter
values for these two scenarios are
given on Table 1. In both of these
toy scenarios, we choose the initial
conditions B(0) = R(0) = G(0) =
2. We select f(R) = tanh(αR) for
the Blue recruitment rate.

Time series plots of the three popu-
lations over time for a range of dis-
crete choices of values of bBR, the
Blue to Red fire rate, are provided in Figure 1 for both Scenarios. In the case of Scenario 1 (Figure 1) we
observe that for small values of bBR (bBR < 1), Red emerges victorious as Blue lacks the firepower to achieve
outright success in combat. When bBR = 1 the two forces have equal attack rates and a stalemate is reached
in which neither side is able to achieve victory as stable fixed and non-trivial solutions for all three populations
are reached. For bBR = 4 Blue wins after diminishing cycles but must remain constant - effectively as an occu-
pation force. For large values of bBR (bBR > 1) persistent limit cycles emerge. In the case of bBR = 7, in the
context of combat we can interpret the result as Blue winning each combat engagement and then withdrawing
from the combat theatre due to a lack of sufficient Red forces to warrant continued engagement. However
since Red is not truly defeated, once sufficient Blue has withdrawn Red experiences a surge in growth which
prompts Blue to re-enter combat.

In the case of Scenario 2 (Figure 1) these limit cycles appear for smaller values of bBR. For bBR = 1 Blue
achieves limited success through repeated defeat of Red, withdrawal, resurgence of Red and surge from Blue,
but over time with lower Blue resources needed to contain Red. A small Blue force remains - a low level
occupation. However here for large values of bBR we observe that Red is the eventual victor regardless of
the fact that Blue, as the superior force, decidedly wins in each prior engagement. The interpretation of Red’s
victory is that once Blue has withdrawn almost the entirety of its force, Red is eventually able to surge faster
than Blue is able to return to combat and hence emerges victorious.
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Figure 1. (a) - (d): Scenario 1. Population strengths for Blue, Green and Red over time for parametrically 
equal forces with a varying Blue to Red fire rate bBR where (a): bBR = 0.1. (b): bBR = 1. (c): bBR = 4. (d): 
bBR = 7. (e) - (h): Scenario 2. Population strengths for Blue, Green and Red over time for a parametrically 

superior Blue force with a varying Blue to Red fire rate bBR where (e): bBR = 1. (f): bBR = 1.6. 
(g): bBR = 2. (h): bBR = 3.

To display the variety of solution types present in our model, including the discrete cases shown so far, in 
Figure 2 we present a preliminary bifurcation analysis obtained through the software XPPAUT [Ermentrout, 
2002] of the system where we set bBR as our bifurcation parameter. In these plots, stable fixed points are 
denoted by red lines, stable periodic are solid green circles, unstable fixed points are black lines, and unstable 
periodic are open blue circles. We only show these plots for B as the qualitative behaviour of the system is 
sufficiently captured by this plot s ince the turning and bifurcation points occur for the same values of bBR 
in the cases of R and G. In this plot, the emergence of stable and unstable limit cycles can be observed as 
bBR varies, consistent with the behaviours seen thus far. In addition to the limit cycles, we note that in the 
case of Scenario 1, there exists a small region of bi-stability around bBR ≈ 1.7 where two stable fixed points 
(red curves) co-exist at the same value of bBR. In order to determine which of the two non-trivial or trivial 
stable equilibrium states Blue eventually settles to, we require knowledge of the basin of attraction which is 
beyond the current scope of this paper. Significantly, i n S cenario 2  w ith a  s uperior B lue f orce, t he region 
of Blue outright success is within a narrow range of bBR values. Intuitively this is a consequence of two 
aspects: on the one hand, Blue’s surge rate is slower than Red’s (to reflect the logistic complexity of moving a 
technologically advanced force compared to indigenous fighters) and on the other the fact that, as we observed 
earlier, increasing fire-rate makes no impact given a finite target acquisition time. Thus Blue’s superiority only 
provides limited success at lower fire-rates.

246



T. A. McLennan-Smith et al., Exploiting ecological non-trophic models in representations of warfare

0 2 4 6 8 10
bBR

0

2

4

6

8

10

B

0 2 4 6 8 10
bBR

0

2

4

6

8

10

B

Figure 2. Bifurcation diagrams for Scenario 1 (left) and Scenario 2 (right). Here B is plotted against 
the Blue-Red fire-rate bBR. Stable fixed points are denoted by red lines, stable periodic are solid green 

circles, unstable fixed points are black lines, and unstable periodic are open blue circles.

4 DISCUSSION AND CONCLUSION

Non-combatant groups, be they governmental or non-governmental, are an intrinsic part of modern conflicts 
where, despite the seeming unavoidability of violence, some effort at humanitarian support for the bystanders 
of the conflict i s u ndertaken. In contrast t o t he t ypical exponential growth or d ecay solutions of t he tradi-
tional Lanchester combat model, our model exhibits a richer set of solution types as demonstrated through 
our initial bifurcation analysis of the system on Figure 2. The manifestation of limit cycles as part of this 
solution set reflects behaviours recognisable in recent real world intervention engagements, where withdrawal 
of Nato/coalition forces after adversary destruction only below the level of visibility to western eyes results 
in “Losing by “Winning” ” [Cordesman, 2018]. The implication of this unfortunate scenario is that even a 
negligible presence of Red in a combat theatre is sufficient to cause an eventual resurgence and thus Blue is 
required to maintain a constant presence (running the risk of appearing to be an occupation force) or undertake 
its own surges to avoid complete defeat. Our combat model with non-trophic interactions effectively captures 
the almost unavoidability of this tragic cycle. Analysis of the basin of attraction of the fixed points identified 
in the model can provide further bounds on the range of parameters for Blue’s success.

Generalisations of this global model will exploit recent developments in ecological modelling which use “mul-
tiplex” networks in networked non-trophic models Kéfi et al. [2016]; Pilosof et al. [2017]; Hutchinson et al.
[2019], namely to develop a “multiplex” networked combat model. In separate work, some of us are also ex-
ploring extensions of the Lanchester model where the Red force draws upon members of the local population. 
The global model presented in this paper is thus a first s tep t owards building a  model of a  complex Force 
operating in a genuinely complex environment that may contribute to force design considerations.
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Pilosof, S., M. A. Porter, M. Pascual, and S. Kéfi (2017). The multilayer nature of ecological networks. Nature
Ecology & Evolution 1(4), 0101.

Sassoli, M., A. A. Bouvier, and A. Quintin (2011). How does law protect in war? International Committee of
the Red Cross.

Syms, R. and L. Solymar (2015). A dynamic competition model of regime change. Journal of the Operational
Research Society 66(11), 1939–1947.

Taylor, J. G. (1983). Lanchester Models of Warfare (2 Vols). Operations Research Society of America, Military
Applications Section: Arlington, VA.

Yodzis, P. and S. Innes (1992). Body size and consumer-resource dynamics. The American Naturalist 139(6),
1151–1175.

248


	Introduction
	Non-trophic interactions in the BGR combat model
	Limit cycles and bifurcations in the BGR combat model
	Discussion and Conclusion



