
Modelling time decay in uncertain implication rules of
evidence theory with a focus on cyber attacks

E. El-Mahassni a

aCyber and Electronic Warfare Division, Defence Science and Technology Group, PO Box 1500, West 
Avenue, Edinburgh, SA, 5111

Email: Edwin.El-Mahassni@dst.defence.gov.au

Abstract: Key to a successful organisation is the ability of its cyber security to respond in a timely manner. 
Hence, speed with regards to having up-to-date knowledge of the system state is paramount. However, this 
knowledge may not always be perfect or complete. A way of quantifying this uncertainty is through the use of a 
reasoning under uncertainty framework. One such framework is the theory of belief functions such as evidence 
theory or Dempster-Shafer theory. It has connections to other frameworks such as probability, possibility and 
imprecise probability theories. But, in cyber security, uncertainty modeling is not enough. A ubiquitous 
problem present in this domain is in modeling cyber attacks so that causal statements that follow a kill chain 
(a well-known paradigm to describe the phases of a cyber attack) can be accurately represented. One way 
this could be done is through implication rules. More precisely, a law of implication is a type of relationship 
between two statements or sentences. Hence, Dempster-Shafer Theory which incorporates implications rules 
with respect to time would be desirable in the cyber domain as a way to model cyber attacks. The aim of 
this paper is to be able to model the different stages of a cyber attack using Dempster-Shafer Theory that also 
incorporates a time parameter. Examples are also provided to illustrate the novelty of this work.
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1 INTRODUCTION

Within the area of autonomous cyber operations, one of the emerging key factors is the need to do things
quickly. Recent cyberattacks like Petya and Wannacrypt succeeded because of the speed and scope by which
they were able to inflict damage (Simons, 2018). For instance, Petya caused 200M-300M USD damage in
about an hour, spreading throughout the entire enterprise. Of course, this is not the first time a cyber attack has
taken place. A well-known model for describing the steps required to carry about an effective cyber threat is
Lockheed Martin’s ”kill chain” (Hutchins et al., 2011). It “describes phases of intrusions, mapping adversary
kill chain indicators to defender courses of action, identifying patterns that link individual intrusions, map-
ping adversary kill chain indicators to defender courses of action” (Hutchins et al., 2011). From an attacker’s
perspective, there are 7 stages listed. These are: recoinnaissance, weaponization, delivery, exploitation, instal-
lation, command and control and actions on objectives. In this paper, any of the steps of the kill chain can be
modelled but here we focus on the first, third and fourth elements of the kill chain. These can be described in
the following manner:

• Recoinnassance. Investigating and analysing available information about the target in order to identify
potential vulnerabilities.

• Delivery. Transmission of a weapon to the targeted environment.

• Exploitation. After the weapon is delivered to the victim host, exploitation triggers intruders’ code.

In a fast moving environment like cyber, it would be unrealistic to expect that a defender will have perfect
knowledge of the system. There might be ignorance and uncertainty as to the current state of the environ-
ment. Hence, a framework for reasoning under uncertainty like the theory of belief functions could be suit-
able for handling such ambiguities. The theory of belief functions, also referred to as evidence theory or
Dempster-Shafer Theory, is a general framework for reasoning with uncertainty, with understood connections
to other frameworks such as probability, possibility and imprecise probability theories. However, it would
be incorrect to think it is a generalisation of Bayesian probability/fusion (Hoffman and Murphy, 1993; Dez-
ert et al., 2012).A good summary of Dempster-Shafer Theory can be found in Rakowsky (2007). There we
read “(Dempster-Shafer Theory) is well-known for its usefulness to express uncertain judgment of experts.”
Further, Dempster-Shafer Theory makes it possible to model: 1) Single pieces of evidence within single hy-
pothesis relations or 2) Single pieces of evidence within multi hypotheses relations as uncertain assessments
of a system in which exactly one hypothesis is objectively true. Dempster-Shafer Theory describes the subjec-
tive viewpoint as an assessment for an unknown objective fact (Rakowsky, 2007). Many have also noted that
Dempster-Shafer theory is a generalisation of the Bayesian theory of probability.

Within the cyber kill chain outlined earlier, it is obvious that a step cannot be taken unless the previous one is
executed. Dempster-Shafer Theory in its original form cannot represent causal relationships between events.
One of the earliest papers to address this issue is Benavoli et al. (2008), through the use of implication rules.
A law of implication is a type of relationship between two statements or sentences. If A and B represent
statements then “if A then B” represents an uncertain implication rule with a certain degree of confidence
with this statement holding true with a probability p such that p ∈ [α, 1]. This is referred to as a one degree of
freedom (1dof) uncertain implication rule. Hence, the implication rule is believed to be true with probability α
and 1−α represents the uncertainty. 1dof simply means that the uncertainty can be represented by means of a
single parameter, i.e. α. Similarly, a 2 degree of freedom (2dof uncertain implication rule) can be defined as:
“ifA thenB” which holds with probability p such that p ∈ [α, β], with 0 ≤ α ≤ β ≤ 1. Thus, this implication
rule is believed to be true with degree α. false with degree 1 − β and uncertain with degree β − α. Hence,
Dempster-Shafer Theory together with implications rules are an attractive option for modeling uncertainty
within causal events. However, in cyber, as noted earlier, time is crucial in determining the ability to carry
out attacks. Thus, in the cyber domain, in addition to having an uncertainty framework that models causal
events, a question of relevance would be: how does the passage of time affect the credibility or reliability of
information?

2 BASIC CONCEPTS OF DEMPSTER-SHAFER THEORY

The basic concepts of Dempster-Shafer Theory described here can also be found in Rakowsky (2007). The
frame of discernment (FoD) is defined as the set of all possible states within the system. It is a model that
describes the set of possible hypotheses and is typically denoted by ΘD. For instance, its construction can be
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given by ΘD = {θ1, θ2, . . . , θk}, where the θi, 1 ≤ i ≤ k, are mutually exclusive and contained in the set
labelled ΘD.

The most common means of encoding evidence is via the basic belief assignment (bba). This can be defined
in the following manner.

Definition 1. Let a function m be defined on the power set of the frame of discernment ΘD as follows:
m : ℘(ΘD)→ [0, 1], X 7→ m(X), where

∑
X⊆ΘD

m(X) = 1.

For a given setX ⊆ ΘD, the belief massm(X) represents the proportion of all relevant and available evidence
that supports the claim that a particular element of ΘD belongs to the set X , but to no particular subset of X .

Dempster’s original rule of combination is used to combine evidence from two independent belief functions
represented as basic belief assignments (bbas) m1 and m2. This combination rule is given by the following
definition.

Definition 2. Let m1,m2 be bbas over a frame of discernment ΘD. Then the resulting be-
lief function after combining both bbas is given by the following direct sum: (m1 ⊕ m2)(X) =

1
(1−κ)

∑
Y ∩Z=X∈℘(ΘD)m1(Y )m2(Z), with the conflict mass (which quantifies the amount of disagreement

between both sets of bbas) given by κ =
∑
Y ∩Z=∅m1(Y )m2(Z).

In Dempster’s rule of combination, the empty set mass is zero, i.e. m(∅) = 0 (Rakowsky, 2007). This
means that ΘD has to be complete and contains all possible hypotheses of the scenario listed (Rakowsky,
2007). Dempster’s rule is commutative, i.e. m1 ⊕m2 = m2 ⊕m1 and associative, i.e. (m1 ⊕m2) ⊕m3 =
m1 ⊕ (m2 ⊕m3), when the basic belief masses are compatible, or not in complete conflict. The commutative
property means that the final result is not affected by the order of the bbas involved and the associative property
means that the final result is not affected by the order of the operations that need to be performed. Two
other useful encodings in one-to-one correspondence with the basic belief assignment m are the belief and
plausibility functions which are defined as bel(A) =

∑
06=B⊆Am(B) and pl(A) =

∑
B∩A6=0m(B),

respectively. For a given subset A,bel(A), quantifies the extent to which the evidence supports A, while
pl(A) quantified the extent to which the evidence does not contradictA. In addition, there are two multivariate
functions which will be used in this paper. A vacuous extension extends a given domain D to a larger domain
D′ and marginalisation projects bbas from a domain D to D′ where D ⊇ D′ Benavoli et al. (2008).

3 IMPLICATION RULES IN EVIDENCE THEORY

The Dempster-Shafer Theory framework on its own is unable to provide a conclusion or effect based on a
preceding statement. This can be achieved through the use of implication rules which takes a statement in the
form of premise and causally links it to an effect; representing this connection in a quantifiable manner which
can then be used within the existing Dempster-Shafer Theory framework (Ristic and Smets, 2005; Benavoli
et al., 2007; Almond, 1995; Benavoli et al., 2008).

In determining whether the methodology for constructing implications rules is valid, there are three axioms
which must be considered — reflexivity (A ⇒ A is always true (tautology)), transitivity (if A ⇒ B and
B ⇒ C, then A⇒ C) and contrapositivity (A⇒ B = B̄ ⇒ Ā).

There has been some previous research in the development and calculation of implication rules in evidence
theory. Transformations for converting 1dof and 2dof uncertain implication rules into the evidence theory
framework have been presented in Ristic and Smets (2005); Benavoli et al. (2007); Almond (1995). However,
according to Benavoli et al. (2008), the contrapositivity rule was not obeyed in (Almond, 1995). The 1dof and
the 2dof uncertain implication rules can now be given (Benavoli et al., 2008).

Definition 3. A 1dof implication rule, A ⇒ B with confidence [α, 1], can be expressed as a bba function
consisting of 2 focal sets on the joint domain D1 ∪D2.

mD1∪D2(C) =

{
α, if C = (A×B) ∪ (Ā×ΘD2

)
1− α, if C = ΘD1∪D2

where Ā is the complement of A in ΘD1
.

Definition 4. A 2dof implication rule, A ⇒ B , with confidence [α, β] can be expressed as a bba function
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consisting of 2 focal sets on the joint domain D1 ∪D2. This representation is defined in the following way:

mD1∪D2(C) =

 α, if C = (A×B) ∪ (Ā×ΘD2)
1− β, if C = (A× B̄) ∪ (Ā×ΘD2

)
β − α, if C = ΘD1∪D2

where Ā is the complement of A in ΘD1
, and accordingly B̄ is the complement of B in ΘD2

.

If there are two implication rules then note the following idea from Benavoli et al. (2008):

Lemma 1. If A1 ⇒ A2 with with a probability p1 ∈ [α1, β1] and A2 ⇒ A3 with a probability p2 ∈ [α2, β2]
then A1 ⇒ A3 with probability p ∈ [α1α2, 1− (1− β1)(1− β2)].

The proof follows from the fact that the lower bound probability of both A1 ⇒ A2 and A2 ⇒ A3 being true
is α1α2 and the lower bound probability of both being false is (1− β1)(1− β2). Similarly, for N implication
rules where A1 ⇒ A2, . . . , AN ⇒ AN+1 we have that A1 ⇒ AN+1 with probability [α1 . . . αN , 1 − (1 −
β1) . . . (1− βN )].

4 TIME DECAY AND ENTROPY

Previously in Dempster-Shafer Theory, one way of modeling time decay is through exponential decay (Kurdej
and Cheraoui, 2012). This decay occurs widely in the natural sciences and dynamic system theory. This is
expressed in the following form: N(t) = N0e

−λt, where λ is the decay rate, N(t) is the quantity at time t,
and N0 = N(0) is the initial quantity. An intuitive characteristic of exponential decay for many people is the
time required for the decaying quantity to fall to one half of its initial value. This is called the half-life and is
often denoted by t1/2. This is given by t1/2 = ln(2)

λ .

Entropy was originally introduced by Shannon (1948) to calculate the amount of information in a transmitted
message, it is also used as a measure of uncertainty. Information entropy for a discrete set of probabilities
pi, i = 1, ..., n is given by H = −

∑
i pi ln{pi}. The minimum value of entropy is zero and is obtained when

we have complete knowledge of a random variable, namely its probability density function is a delta function.
The maximum value is− ln{n} where n is the number of hypotheses or elements in the frame of discernment.

The standard entropy definition operates over probabilities, so is not appropriate for the Dempster-Shafer
Theory without some modification.

An entropy measure based on the plausibility transformation Cobb and Shenoy (2006) has been proposed
in Jirousek and Shenoy (2018). For a frame of discernment Θ = {x1, x2, . . . , xn}, the plausibility transfor-
mation is defined as P pl(xi) = K−1pl(xi), for i = 1, . . . , n and where K =

∑
xi∈Θ,

i,=1,...,n
pl(xi). This new

measure satisfies many properties that would be desired, such as: consistency with DS theory semantics, non-
negativity, monotonicity, probability consistence and additivity (on a weak basis). The formula for this entropy
measure is given by H ′ =

∑
X∈ΘD

P pl(X) ln
{

1
Ppl(X)

}
+
∑
Y ∈2ΘD m(Y ) ln {|Y |}.

4.1 Time Decay within Dempster-Shafer Theory

Background. In this section, we aim to propose a framework for describing confidence values within the
Dempster-Shafer framework through the use of time decay. This is not the first time that time decay has been
implemented in Dempster-Shafer Theory. In (Kurdej and Cheraoui, 2012), three discounting methods were
proposed with exponential time decay being used in the examples. In this paper, the concept of time decay,
in particular exponential time decay, is extended further to include implication rules. The motivation is as
follows: in cyber, speed is critical and the confidence of a belief should be correlated to when the information
was obtained. Further, it is also desirable to model causal relationships so that cyber attacks can be accurately
represented. That is, at time t = 0, the instantaneous moment when a sensor reading was obtained, the bba for
a certain non-trivial proposition should be at its maximum value. However, over time, the confidence placed
in this value should decrease and instead be allocated or moved towards the ignorance bba or, at the very least,
a bba where the cardinality of the focal element is greater. As time passes, it would also be useful to quantify
the entropy of such a system. Intuitively we would expect the entropy to increase as time, t, passes. This
is because an increase in time also leads to an increase in the ignorance mass while every other single mass
decreases in value.
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Time Decay in Uncertain Implication Rules. The idea of time decay explained above can now be extended
to uncertain implication rules in Dempster-Shafer Theory. The principle is the same: as time increases, the
mass of the universal set increases at the expense of those masses with non-trivial elements from the frame of
discernment. Hence, the following definitions are given.

Definition 5. A 1dof implication rule, A ⇒ B with confidence [α, 1] can be expressed as a bba function
consisting of 2 focal sets on the joint domain D1 ∪D2.

mD1∪D2(C) =

{
αe−λt , if C = (A×B) ∪ (Ā×ΘD2

)
1− e−λt + (1− α)eλt, if C = ΘD1∪D2

where Ā is the complement of A in ΘD1 and λ is the decay rate.

Definition 6. A 2dof implication rule, A ⇒ B with confidence [α, β] can be expressed as a bba function
consisting of 2 focal sets on the joint domain D1 ∪D2. This representation is defined in the following way:

mD1∪D2(C) =

 αe−λt, if C = (A×B) ∪ (Ā×ΘD2
)

(1− β)e−λt, if C = (Ā× B̄) ∪ (A×ΘD2
)

1− e−λt + (β − α)e−λt, if C = ΘD1∪D2

where Ā is the complement of A in ΘD1 , B̄ is the complement of B in ΘD2 and λ is the decay rate.

With this definition, it can be seen that over time (as t increases) then α→ αe−λt and β → 1− (1− β)e−λt.

In Lemma 1, we described how two implications rules are combined. In Lemma 2, we extend this idea to
include a time parameter.

Lemma 2. If A1 ⇒ A2 with with a probability p1 ∈ [α1, β1] with decay rate λ1 and A2 ⇒ A3 with a
probability p2 ∈ [α2, β2] and decay rate λ2 then A1 ⇒ A3 with probability
p ∈ [α1α2e−(λ1+λ2)t, 1− (1− β1)(1− β2)e−(λ1+λ2)t].

The idea here is that as t increases then the implication rule approaches a trivial result. That is, the lower bound
approaches 0 and the upper bound approaches 1. Now, the result of the lower bound is rather easy to see. For
the upper bound, we note that as before (1 − β1)(1 − β2) is the probability of both implications rules not
being true. When time decay rates are introduced we see that as t increases then (1− β1)(1− β2)e−(λ1+λ2)t

decreases and so the upper bound which is given by 1− (1− β1)(1− β2)e−(λ1+λ2)t also increases.

5 EXAMPLES

In this section, a couple of examples focused on cyber attacks will be demonstrated. The first uses a 1dof
implication rule. It involves the concept of an attacker carrying out a reconnaissance and then this implies the
delivery of weapon to a targeted environment. The second example is more complex and involves the stages
of reconnaissance, delivery and exploitation. For each example, we also demonstrate that as time increases,
the overall entropy also increases which demonstrates the intuitive notion that uncertainty also increases over
time.

5.1 Example 1

At any given moment, there is a warning system that alerts an administrator that a computer might be surveyed
for a cyber attack. As time progresses, and in the absence of any updates, the administrator is less certain that
such a survey is being conducted. From an attacker’s perspective, the intent of such a survey is to find or detect
a vulnerability which may then be exploited. However, again, as time progresses, the lack of a forthcoming
attack suggests that it becomes less certain that a vulnerability could be found.

This problem is now encoded using Dempster-Shafer Theory in the following manner. Let ΘR = {r, r̄}
denote the frame of discernment of whether an attacker is conducting a reconnaissance or not respectively
and let ΘD = {d, d̄} describe the frame of discernment for delivering a weapon delivery. The confidences
expressed as masses by an attacker doing a survey are m1(r) = 0.8,m1(r, r̄) = 0.2. An administrator in
charge of protecting the network knows that there is a chance that the attacker might find a vulnerability. For
instance, consider the following example: if there is reconnaissance being done then a weapon which will be
delivered targeting a vulnerability has a confidence of at least 0.4. However, in the absence of any further
updates, the confidence decreases with respect to time according to some rate decay λ.
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Using the formula given in Definition 5, this rule can be converted into the following bba functions:
m2((r, d), (r̄, d), (r̄, d̄)) = 0.4e−λdt,m2((r, d), (r̄, d), (r, d̄), (r̄, d̄)) = (1−e−λdt)+0.6e−λdt = 1−0.4e−λdt.
For the case when t = 0, we have m2((r, d), (r̄, d), (r̄, d̄)) = 0.4,m2((r, d), (r̄, d), (r, d̄), (r̄, d̄)) = 0.6.
Letting m1 ⊕ m2 = m3 and using the vacuous extension in Definition 4, we have m3((r, d)) =
0.32,m3((r, d), (r, d̄)) = 0.48,m3((r, d), (r̄, d), (r̄, d̄)) = 0.08,m3((r, d), (r̄, d), (r, d̄), (r̄, d̄)) = 0.12.
Marginalising this with respect to recoinnassance we are left with m(d) = 0.32,m(d, d̄) = 0.68. At any time
t, and performing similar calculations, these masses are simply: m(d) = 0.32e−λdt,m(d, d̄) = 1−0.32e−λdt.

For this example,

H ′ =
ln
{(

2− 0ce−λt
)}

(2− ce−λt)
+

(
1− 0ce−λt

)
(2− ce−λt)

ln

{(
2− ce−λt

)
(1− ce−λt)

}
+
(
1− ce−λt

)
ln{2}, (1)

where c = 0.32 As t increases, we get H ′ = 1
2 ln{2}+ 1

2 ln{2}+ ln{2} = 2 ln{2} ≈ 1.386.

Figure 1. Entropy of Example 1 as a Function of Time for λ = 0.1

This diagram shows that entropy increases to a limit over time which is a desired property of the entropy
function. Using the definition of belief, we note that at t = 0,bel(v) = 0.32. This means that the lower
probability of a vulnerability is 0.32. As time passes, then m(v, v̄) tends to 1 which represents complete
ignorance.

5.2 Example 2

This example is inspired from Case Study 2 in Centre (2015) which described a large UK company’s internal
network being infected by remote access malware. Also, recall the three stages listed earlier: reconnaissance,
delivery and exploitation.

For this example, we will calculate the confidences of a vulnerability being found using some arbi-
trary numbers. Let the frame of discernments be ΘR = {r, r̄} for reconnaissance and ΘD = {d, d̄}
for delivery. Just as in Example 1, there is confidence of 0.8 that reconnaissance is being con-
ducted and that: i) if there is reconnaissance being carried out then a weaponized delivery will be
sent with a confidence between 0.4 and 0.7 with decay rate λ1 = 0.7 and ii) if there is a deliv-
ery then there will be an exploitation with a confidence between 0.2 and 0.3 with decay rate λ2 =
1. Using Definition 6, we have: m2((r, d), (r̄, d), (r̄, d̄)) = 0.4e−0.7t, m2((r, d), (r, d̄), (r̄, d̄)) =
0.3e−0.7t, m2((r, d), (r̄, d), (r, d̄), (r̄, d̄)) = 1 − 0.7e−0.7t, m3((d, e), (d̄, e), (d̄, ē)) = 0.2e−t,
m3((d, e), (d, ē), (d̄, ē)) = 0.7e−t and m3((d, e), (d̄, e), (d, ē), (d̄, ē)) = 1 − 0.9e−t. Letting the common
frame of discernment be ΘC = {(r, d, e), (r̄, d, e), (r, d̄, e), (r, d̄, ē), (r̄, d̄, ē), (r̄, d̄, e),
(r, d, ē), (r̄, d, ē)} then we can combine the two bbas listed above, i.e. (m2⊕m3). And, after combining those
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fused masses with m1 and then marginalising with respect to reconnaissance and delivery, we are left with
m(e) = 0.064e−1.7t,m(e, ē) = 1− 0.064e−1.7t.

Another way to derive this result is by using Lemma 2. Using the transitive property, we have
that the statement: If there is reconnaissance being carried out then there will be an exploit with
probability between 0.08e−1.7t and 1 − (1 − 0.3)(1 − 0.7)e−(0.7+1)t = 1 − 0.21e−1.7t. Us-
ing Definition 6, we then have m4((r, e), (r̄, e), (r̄, ē)) = 0.08e−1.7t, m4((r, e), (r, ē), (r̄, ē)) =
0.21e−1.7t,m4((r, e), (r, ē), (r̄, e), (r̄, ē)) = 1−0.29e−1.7t. This is then combined withm1. Then, marginalis-
ing with respect to recinnaissance and delivery we get the same results as above; that is: m(e) = 0.064e−1.7t,
m(e, ē) = 1 − 0.064e−1.7t. The entropy equation is the same as in (1), (with c = 0.064) with the entropy
increasing to a limit over time which is a desired property of the entropy function. Using the definition of
belief, we note that at t = 0, bel(v) = 0.064. This means that the lowerbound probability of a vulnerability is
0.064. As time passes, then m(v, v̄) tends to 1 which represents complete ignorance.

6 CONCLUDING REMARKS

This is primarly a theoretical paper. It would be interesting to see how these theories would perform in more re-
alistic scenarios which would include determining the value of λ. Also, although here we exclusively used the
exponential decay, other types which might reflect a cyber system suddenly and rapidly decaying, as opposed
to a smooth continuous function, could also be utilised. Dempster-Shafer Theory is an attractive framework
for modeling uncertainty and ignorance. In addition, due to previous work, Dempster-Shafer Theory would
allow us to model the complexity within a cyber environment through the use of implication rules. But, equally
important within a cyber environment, timeliness of information is paramount. In this paper, we implemented
a time-decay model within a Dempster-Shafer Theory framework that can be used with implications rules
thereby allowing us to model in real-time the effect of time on data which slowly becomes outdated an its
affect on our knowledge of the network. Future work could concentrate on the similarities or differences with
other ways of modelling partial observability.
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