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Abstract:  Uncertainty is so ubiquitous in most real world problems that understanding the fundamental 

nature of uncertainty is important. Stochasticity has been shown to be only one of the many dimensions of 

uncertainty. Uncertainty can be of many types and different methodologies for decision making are applicable 

in different cases. In cases where probability distributions of uncertain parameters cannot be ascertained with 

great confidence, robustness of strategies is more important than optimality and hence the robust optimization 

paradigm is more appropriate.  

We present a simple polyhedral representation of uncertainty based on robust optimization that can be 

generated through specification of constraints or easily derivable from historical data with underlying 

uncertainty. Such representations are a convenient way to summarize large datasets and lead to tractable ways 

of comparing alternative scenarios or assumptions. We also present a set theoretic relational algebra to 

qualitatively compare these polyhedral models (polytopes) or alternative sets of uncertainty. The relational 

algebra arises because of the non-zero measure of these convex polyhedral objects - these are aggregates. We 

define the subset, intersection and disjoint relational algebraic operators to compare alternative scenarios or 

assumptions. An intersecting relationship between two polyhedral models based on assumptions means that 

there is commonality between the two assumptions. Similarly, if one is a subset of the other, then its 

underlying data is more specific than the other. 

To facilitate analysis of a large number of such different scenarios with underlying uncertainty sets, we have 

also developed a novel database with facilities to store and perform such set theoretic analysis of alternative 

future scenario sets efficiently and easily through simple queries. We call our database as CMdB or Convex 

Model Database. The database can be coupled to any decision support system to help in decision making and 

analysis under uncertainty. Hence, with our approach, it is easy to - quantitatively and qualitatively compare 

one set of future scenarios against another, resolve conflicting future estimations, optimize over such 

alternatives and relate the optimization outputs to the inputs. We can do this in a tractable manner with a wide 

variety of constraints and assumptions about the future. We show this in the paper with our examples from 

supply chain and transportation systems. 
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1. INTRODUCTION

Uncertainty is an integral part of many optimization and planning problems and one cannot ignore the effects 

of uncertainty, as such a disregard might lead to highly sub-optimal or even infeasible solutions. Even small 

perturbations in the nominal values of data can result in highly infeasible solutions (Ben-Tal and Nemirovski 

2000). The classical paradigm of stochastic programming is to model uncertainty as a probability density. 

However, in many practical situations, it is exceedingly difficult to accurately describe probability distributions 

of uncertain parameters. The robust optimization paradigm can be used in such cases. Robust methodology 

models uncertainty as ranges or convex sets, while one tries to protect against infeasibilities and nothing more 

is assumed about the uncertainty sets. An ''uncertainty immunized'' or ''robust feasible'' solution is one which 

remains feasible no matter what the realization of the data is. ''Robust optimal'' solution is the best solution 

among all the uncertainty immunized solutions. 

Traditionally, uncertainty was understood to have one dimension, nature of uncertainty. This can be - either 

uncertainty due to variability inherent to a system under consideration (also known as aleatoric uncertainty), 

where probabilities are known; or uncertainty due to limited data and/or knowledge (also known as epistemic 

uncertainty), where the probabilities are unknown. At the present time, uncertainty is understood to have many 

more dimensions (Morgan 2009), (Bradley 2014), (Walker 2003), (Spiegelhalter 2011; Riesch 2012), such as 

the location of uncertainty within the system model, different levels of uncertainty between the extremes of 

complete certainty and total ignorance, etc. Higher level uncertainties have alternatively been termed as deep 

uncertainty (Lempert 2006), or severe uncertainty (Ben-Haim 2001). 

1.1. Decision making under uncertainty 

When the uncertainties are well defined, the focus is on identifying optimal strategies and methods such as 

those based on Bayesian decision analysis are applied. However, under deep uncertainties, the robustness of 

strategies is more important than optimality and traditional decision making methods looking for optimality 

are of limited use. In such situations, it is imperative that decisions be made while considering a wide range of 

alternative future scenarios and choose strategies that are robust. Scenario planning (Van der Heijden 1996), is 

the classical technique to find robust policies. Bankes (Bankes 1993), described a methodology called 

Exploratory modeling and analysis (EMA) and Lempert et. al. (Lempert et. al. 2006) proposed an approach 

called Robust decision making (RDM) for decision making under deep uncertainty that is based on EMA. Ben-

Haim (Ben-Haim 2001) proposes a decision making framework under deep uncertainty based on information-

gap models of uncertainty. The study of alternative future scenarios is equivalent to an analysis of alternative 

assumptions or beliefs held by a decision maker. It would help a decision maker to compare one set of beliefs 

or assumptions against another to resolve potentially conflicting predictions, about the future. Our work focuses 

on such an analysis while quantitatively analyzing assumptions and beliefs. In section 1.2 we briefly describe 

our representation of uncertainty and a novel database that supports decision making within our framework, 

along with the specific contributions of our work. 

1.2. Our representation of uncertainty and the Convex Model Database 

Our uncertainty sets are modeled as convex polyhedra consisting of intuitive and simple linear constraints that 

are derived from historical time series data (sums and differences of demands, capacities, supplies, inventories 

etc). In economic and OR applications these constraints have economic meaning and reflect 

substitutive/complementary behavior. As an example, for demand parameters in a supply chain, the 

substitutive, complementary and aggregate behavior can be expressed through the following constraints: 

 Substitutive: 𝐿𝐵1 ≤  𝑑1 + 𝑑2 ≤  𝑈𝐵1 – if one demand increases, the other must decrease and vice

versa.

 Aggregates: 𝐿𝐵2 ≤ ∑{𝑑𝑖} ≤  𝑈𝐵2 – the total demand is bounded.

 Complementary:𝐿𝐵3 ≤  𝑑1  −  𝑑2 ≤  𝑈𝐵3 – if one demand increases, the other increases with it and

vice versa.

The advantage with using this polyhedral representation of uncertainty is that it is intuitive to the decision 

maker (especially in economic and OR applications). This representation allows us to develop high speed 

methods to analyze alternative sets of constraints using a novel set theoretic relational algebra described in 

Section 2.  To facilitate analysis of a large number of such uncertainty sets, we have also developed a novel 

database with facilities to store convex models and perform such set theoretic analysis of alternative scenario 

sets efficiently and easily through simple queries. We call this database a Convex Model Database (CMdB) 

which can be queried by Decision Support Systems. 

Our specific contributions include: 
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 A simple polyhedral representation of uncertainty based on robust optimization that can be generated

through specification of constraints or easily derivable from historical data in order to do our analysis

in a tractable way.

 A set theoretic relational algebra to qualitatively compare alternative sets of uncertainty.

 A database with facilities to store and query convex uncertainty sets and that can be coupled to any

decision support system to help in decision making. We show the capabilities of the database with

examples from applications.

The rest of the paper is organized as follows. Section 2 describes our novel database for comparing alternative 

assumptions along with the set theoretic relational algebraic operations that can be performed on convex 

uncertainty sets. Section 3 shows examples of decision making in applications such as supply chains and 

transportation systems where the underlying data is uncertain. 

2. CONVEX MODEL DATABASES FOR COMPARISON OF ALTERNATIVE ASSUMPTIONS

The CMdB is a database to store and manipulate convex models efficiently for a Decision Support System. In 

a CMdB, a table or relation 𝑅 = (𝐴1, 𝐴2 … 𝐴𝑛), where 𝐴𝑖 are the attributes and a tuple 𝑡 in relation 𝑅 will have

𝑡[𝐴𝑖] = 𝐶 where 𝐶 is a convex model such that for any two points 𝑥1, 𝑥2 ∈ 𝐶, 0 ≤  𝜃 ≤ 1, 𝜃𝑥1 +
(1 −  𝜃𝑥2) ∈ 𝐶. Though the database in general can be used for all convex models, our initial work is limited

to polyhedral models or polytopes. We consider the half plane representation of polytopes where, 𝜀 is an affine 

Euclidean space of finite dimension 𝑛, and polytope 𝑃 =  ⋂ 𝐻𝑖
𝑝
𝑖=1  of 𝜀 is defined as the intersection of a finite

number of 𝑝 ≥ 1, of closed half spaces, 𝐻𝑖 . In the case of polytopes, an attribute 𝐴𝑖 could be the volume of the

polytope, the amount of information in terms of bits contained in the polytope computed using Shannon’s 

entropy (Shannon 1948), etc.  

A tuple 𝑡 in 𝑅 with 𝑡[𝐴𝑖] = 𝐶 has 𝐶 = {𝑥1, 𝑥2 … . 𝑥𝑛 , 𝑦1, 𝑦2 … . 𝑦𝑚} where 𝑥1, 𝑥2 … … 𝑥𝑛 are the sample points

used to derive the model and 𝑦1 , 𝑦2 … . 𝑦𝑚  are the new unseen data points that lie within the bounded region of

the convex polytope. The model thus represents future uncertainty, where the model is the sole representative 

of all future possibilities. Similarly, models with different assumptions or models with different future 

possibilities can be stored and compared in the database. To compare different assumptions, we have defined 

set theoretic relational algebra for convex uncertainty sets. A database is useful when the number of such future 

possibilities or scenarios is large. The CMdB proves useful in such situations as shown in our example in 

section 3.4 where analysis on many scenarios can be done by simple querying. 

2.1. Set theoretic relational algebra for convex uncertainty sets 

The relational algebra of convex representations of uncertainty qualitatively compares alternative sets of 

uncertainty based on high speed computational advances in convex optimization. Convex representations are 

also a convenient way to summarize large datasets and lead to tractable ways of comparing alternative 

summaries. The relational algebra arises because of the non-zero measure of the convex objects - these are 

aggregates. Point data are either equal or not-equal, aggregate data can be disjoint, partially or fully 

overlapping. This results in a rich relational algebra. Opposed to points, in the case of sets we can have relations 

such as partial overlap amongst two sets in addition to just equality and inequality. Let us suppose that there 

are two convex uncertainty sets or data summaries 𝐴 and 𝐵. The possibilities for set relations between set 𝐴 

and set 𝐵 are outlined below: 

 Set 𝐴 is more specific than 𝐵 and does not include anything that is missing from 𝐵. In set theoretic

language, 𝐴 ⊂  𝐵.

 Sets 𝐴 and 𝐵 are totally different and have no (N-dimensional) parameter values in common. In set

theoretic language, 𝐴 ∩  𝐵 = 𝜙
 Sets 𝐴 and 𝐵 have some assumptions in common, but neither is a subset of the other: 𝐴 ∩  𝐵 ≠ 𝜙

For polyhedral uncertainty sets, the set relations can be established through direct solution of LPs containing 

the joint constraint sets. For example, for subsets we can find points in the subset common to both, and points 

in the superset, and a hyperplane cutting the superset, but not in the subset. For other forms of uncertainty such 

as ellipsoidal uncertainty sets and probabilistic uncertainty sets, it is much harder to establish the set relations. 

2.2. Comparison with ellipsoidal uncertainty 

For ellipsoids, a direct method of detecting subsetness involves solving a linear matrix inequality formulated 

using the S-procedure (Boyd and Vandenberghe, 2004). Ellipsoids can be represented as sublevel sets of a 

quadratic function as follows: 
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𝜀1 = 𝑥𝑇 𝐹1 𝑥 + 2𝑔1
𝑇 𝑥 + ℎ1 ≤ 0

𝜀2 = 𝑥𝑇𝐹2𝑥 + 2𝑔2
𝑇𝑥 + ℎ2 ≤ 0

Where 𝐹𝑖 ∈  𝑆++ and ℎ𝑖 − 𝑔𝑖
𝑇  𝐹𝑖

−1𝑔𝑖 < 0; ℎ𝑖 ∈  𝑅,  𝑔𝑖 ∈  𝑅𝑛.

The condition that 𝜀1 is a subset of 𝜀2 can be stated as the following: 𝜀1 ⊆  𝜀2 if and only if there is a 𝜆 > 0
such that: 

[
𝐹2 𝑔2

𝑔2
𝑇 ℎ2

] ≤  𝜆 [
𝐹1 𝑔1

𝑔1
𝑇 ℎ1

]    ⇒    [
𝐹2 −  𝜆𝐹1  𝑔2 −  𝜆𝑔1

𝑔2
𝑇 − 𝜆𝑔1

𝑇 ℎ2 −  𝜆ℎ1
] 

which involves solving a convex optimization. Clearly, relational operators with ellipsoidal uncertainty is 

computationally heavy, compared to polyhedral uncertainty (which uses only LP’s). 

2.2.1. Comparison with stochastic uncertainty 

Stochastic uncertainty introduces non-uniform probability distributions. Relational algebra with non-uniform 

probability distributions is not easy in general and involves solving integrals. However, we can use feature 

extraction using (say) neural networks, and do the relational algebra in the feature space, where it is linear, if 

the features are so designed. One technique to quantify the agreement between two probability distributions is 

to find the area of the region where the two density functions overlap. Let 𝑝1(𝑥) and 𝑝2(𝑥) characterize two

different specifications of uncertainty with finite support. The area of the overlapping region of the two 

functions is given by the following integral, also known as the Weitzman’s Measure:  

∆= ∫ min{𝑝1(𝑥), 𝑝2(𝑥)}𝑑𝑥

Probability distributions with infinite support will generally intersect, but this is not always the case. For 

example, consider p.d.f’s that have nonzero values in y = x; and y = x+1; both have infinite support in x and y, 

but are disjoint. The degree of the overlap between two distributions with infinite support can also be quantified 

using the Weitzman’s measure. 

2.3. Comparison of assumptions using relational algebraic operators in CMdB 

If 𝑃1and 𝑃2 are two polytopes in a relation 𝑅 in the CMdB, then the relational algebraic operators are 𝑃1 ∁ 𝑃2

for subset, 𝑃1 𝜕 𝑃2 for disjoint and 𝑃1  ∩  𝑃2 for intersection and they help facilitate decision analysis based on

assumptions. 

Let 𝑃′ = { 𝑃1, 𝑃2, … . 𝑃𝑛} be the set of all models/polytopes in a relation/table 𝑃′ and 𝑄′ = { 𝑄1, 𝑄2, … . 𝑄𝑛} be

the set of all models/polytopes in another relation/table 𝑄′ .Then 𝑃𝑖 = {𝑐1, 𝑐2, … 𝑐𝑛} be the set of constraints/half

spaces representing each polytope 𝑃𝑖 . Also let 𝑅𝑖 ∈  𝑅𝑁 be the region enclosed by polytope 𝑃𝑖 . Then 𝑅1 =

{𝑥1, 𝑥2, … . 𝑥𝑛} where 𝑥1, 𝑥2 … . 𝑥𝑛 are points lying in region 𝑅1of polytope 𝑃1, only if countable. Similarly 𝑅2

= {𝑦1, 𝑦2 , … . 𝑦𝑛} where 𝑦1, 𝑦2 … . 𝑦𝑛 are points lying in region 𝑅2 of polytope 𝑃2.

1. A disjoint operation is defined by 𝑃1𝜕𝑃2 = {𝑥𝑖 ∈ 𝑅1 𝑎𝑛𝑑 𝑦𝑖 ∈ 𝑅2  =>  𝑥𝑖 ≠  𝑦𝑖}

2. An intersect operation is defined by 𝑃1 ∩ 𝑃2 = {∃𝑥𝑖|𝑥𝑖 ∈ 𝑅1 𝑎𝑛𝑑 𝑥𝑖 ∈  𝑅2 }

3. A subset operation is defined by 𝑃1∁𝑃2 =  {∀ 𝑥𝑖  |𝑥𝑖 ∈  𝑅1 𝑎𝑛𝑑 𝑥𝑖  ∈  𝑅2 }

We use algorithms briefly mentioned in section 2.1 based on Linear programming to compute these operations 

between polytopes and answer queries. Special query optimization techniques exist in the database to retrieve 

faster results since these queries involve heavy weight operations, namely solving LP’s. 

A sample query would be, SELECT * FROM T WHERE T.* INTERSECTS P 

This query fetches from table T, every polytope which intersects with polytope P. This means that these 

polytope models have behavior similar to the model implied by P, when the parameters are in the intersection 

region. 

3. APPLICATION FOR DECISION MAKING

The CMdB finds use in a wide variety of applications ranging from supply chain management, energy 

optimization to transportation systems (Sanat 2018). 

3.1. Analysing Assumptions 

Consider an example from supply chain management where the CMdB is used for decision support. 
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Example: Consider a distributor dealing with the distribution of 3 products, namely choco spread, jam and 

peanut butter in 3 different cities namely, C1, C2 and C3. The distributor has demand data for these products 

in all the three cities for the last 1 year. However, the demand in these cities or markets is uncertain and 

decision support is critically dependent on assumptions. The distributor would like to analyze his data and run 

different queries such as the ones listed below. 

Q1: A new product which is a variant of peanut butter is being launched 

whose demand is based on assumptions. Is this demand similar to the 

demand of existing peanut butter product based on data? 

Q2: For all the three products in the distributor’s portfolios, are the 

demands in all three cities different? 

Q3: Three different stakeholders provide different a-priori assumptions 

on the demands for city C1. Which assumptions should be considered while 

considering any future decision? 

We have methods to derive models/constraint sets/polytopes from any 

historical data using an N-dimensional German tank method (Aswal et.al. 

2011). Polytopes can also be created based on assumptions specified in the 

form of constraints. Using the CMdB we can systematically analyze 

relationships between summary polytopes derived from the demand data. 

For Q1 above, four polytopes can be stored, three derived from demand data 

of peanut butter for each of the three cities and another based on 

assumptions for the demand of the new product. When checked for an 

intersecting relationship, if the polytope for the new product intersects with 

the demand data of any of the cities, then it indicates a good candidate city 

to launch the new product. 

Similarly, for Q2, three polytopes can be derived representing all the data of the three products, one for each 

city. Let us say, when an algebraic relationship query is executed on them, their relationships are as shown in 

figure 1(a) where polytope C1 represents demand in city C1, C2 for city C2 and C3 for city C3.This will 

provide insight to the distributor that the demand of the three products are similar between cities C1 and C2 

and between C2 and C3 and that C1 and C3 demands are completely different from each other.  

For query Q3, each of the three polytopes based on assumptions of three different stakeholders are A1, A2 and 

A3 as shown in figure 1(b). Which input assumption set can we choose here?  A3 being completely different, 

we may want to ignore it. In choosing polytope A1, we assume the least and in choosing polytope A2, we 

assume the most. Since A1 is a subset of A2, polytope A2 encompasses all the scenarios of A1 and some more. 

The database can also provide the information content in the polytopes in terms of number of bits calculated 

using Shannon’s entropy (Shannon 1948), details of which are omitted for brevity. If the information content 

of A1 is close to that of A2, then A1 could be a good 

choice since it does not assume too many 

assumptions with similar information content. Thus 

without looking at the underlying microscopic data 

behind the different constraint sets or scenarios, we 

can analyze and attempt to identify the most suitable 

constraint set to drive our decisions quickly. 

3.2. Alternative scenario sets with varied 

assumptions 

Consider a small supply chain with two suppliers, 

two factories, two warehouses and two demand 

variables (real supply chains have many more 

dimensions). The demand variables cannot vary 

arbitrarily. Their variability is modelled as a region 

of the 2-dimensional demand space, defined by 

certain constraints. In this example, the constraints 

are linear, and forms a polytope, a special case of a 

convex model.  

A hierarchy of constraint sets (forming a polytope) 

is generated from a given constraint set on the 

uncertain demand variables and we see how 

Figure 1. Relational algebraic 

analysis of convex uncertainty 

sets with assumptions 

Figure 2. Hierarchy of constraints 
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guarantees on the output become looser as uncertainty increases. We show below constraints derived for the 2 

demand variables from demand data. 𝑑𝑒𝑚1 is the demand of product 1 in market 1 and 𝑑𝑒𝑚2 is the demand

of product 1 in market 2. These constraints are economically meaningful.  

𝑐1: 171.43 𝑑𝑒𝑚1 +  128.57𝑑𝑒𝑚2 ≤ 79285.71
𝑐2: 171.43 𝑑𝑒𝑚1 + 128.57 𝑑𝑒𝑚2 ≥ 42857.14

𝑐3: 57.14 𝑑𝑒𝑚1 + 42.86 𝑑𝑒𝑚2 ≤ 26428.57
𝑐4: 57.14 𝑑𝑒𝑚1 + 42.86 𝑑𝑒𝑚2 ≥ 14285.71

𝑐5: 175.0 𝑑𝑒𝑚1 + 25.0 𝑑𝑒𝑚2 ≤ 65000.0
𝑐6: 175.0 𝑑𝑒𝑚1 + 25.0 𝑑𝑒𝑚2 ≥ 22500.0

𝑐7: 0.51 𝑑𝑒𝑚1 − 0.39 𝑑𝑒𝑚2 ≤  237.86
𝑐8: 0.51 𝑑𝑒𝑚1 − 0.39 𝑑𝑒𝑚2 ≥  128.57

𝑐9: 300.0 𝑑𝑒𝑚1 ≤  105000.0
𝑐10: 300.0 𝑑𝑒𝑚1 ≥  30000.0

Constraints 1 to 6 in order are bounds on the sum of product of demand and price. These are revenue constraints. 

Constraints 7 and 8 are competitive constraints and 9 and 10 are bounds on demand in market 1. Figure 2 (a) 

shows the graphical representation of the constraint set formed with these constraints. Figure 2 (b) shows the 

graphical representation if constraints 8, 9 and 10 are deleted from the set in Figure 2 (a). The volume of the 

feasible region increases signifying more uncertainty. These constraints represents the situation when only the 

revenue constraints are acting and the market is not competitive. Figure 2 (c) shows the constraint set if 3 more 

constraints are deleted. Figure 2 (d) shows the constraint set when only the bound constraints 9 and 10 are 

acting. This constraint set intersects with the constraint sets shown in Figures 2 (a), (b) and (c).  

Table 1 summarizes the information content for the hierarchy of constraint sets formed by constraints 1 to 10 

and also bounds for total cost (using optimization methods outside the scope of this paper), which is the 

objective function for this example. We have defined information content as the volume of the uncertain 

polyhedral set (Shannon 1948). As the uncertainty reduces, the bounds become tighter (range of output varies 

from 28% for 10 constraints to 106.85 % for just two constraints). 

This example illustrates how a hierarchy of scenario sets that hold economic meaning is generated, amount of 

uncertainty in the scenario sets is quantified, and how the change in the performance metric as the amount of 

uncertainty increases is examined.  A decision support system supporting such an analysis has to offer facilities 

for specifying and optimizing over a hierarchy of constraint sets related through the subset and intersection 

operators. The CMdB proves useful for such analysis.

3.3. Relational Algebraic Operator Results 

Table 2. Supply chain networks with time taken for relational algebraic operations between two polytopes 

Network Structure Number of 

Variables 

Number of 

Constraints 

Disjoint Operation 

Time (ms) 

Intersection 

Time (ms) 

Subset 

Time (ms) 

3 Suppliers, 3 Factories, 3 

Warehouses & 3 Markets 

20 50 <1 15 25 

2 Suppliers, 2 Factories, 5 

Warehouses & 20 Markets 

100 200 2 60 75 

2 Suppliers, 5 Factories, 

10 Warehouses,20 Markets 

100 400 2 140 150 

Number of 

constraints 

Information Content 

in No of bits 

Minimum Cost 

(%) 

Maximum Cost 

(%) 

Range of output 

Uncertainty (%) 

10 1.84 100.00 128.38 28.38 

9 0.81 60.06 154.50 94.45 

7 0.73 60.06 158.72 98.66 

4 0.58 54.99 158.72 103.73 

2 0.44 54.92 161.77 106.85 

Table 1. Summary of information analysis for hierarchical constraints 
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We present a summary of our results in Table 2 from executing the relational algebraic operators, namely, 

disjoint, intersection and subset operators in the CMdB, for supply chain networks of different sizes. We 

assume that the network consists of only suppliers, factories, warehouses and markets to meet demands. The 

results here are presented with Gurobi 7 profiled on a machine having an Intel i5 processor at 2.50GHz and 

16GB RAM. Our runtimes being less than a second, the results are encouraging. 

3.4. Other Applications – Transportation 

The CMdB has also been used in transportation networks such as railways where each polytope corresponds 

to data representing a single train. The variables are arrival and departure times at block sections (section 

between two stations) and constraints are bounds on their min and max values, correlations between times at 

adjacent block sections etc. Different scenarios can be generated by introducing assumptions such as delays 

into the arrival and departure times. A relational algebraic analysis can be performed on the polytopes to check 

if trains conflict along any route (Sanat 2018). If two polytopes intersect, then it is an indication that the 

corresponding trains are conflicting. This kind of analysis involving inter polytope relationships can detect 

flaws in existing schedules by detecting conflicting trains and have the potential to improve them. 

4. CONCLUSION AND FUTURE WORK

Uncertainty can be of many kinds and the theory of probability may not be suitable for all the cases. In such 

cases, robustness of the answers is more important and CMdB is a step towards making decision analysis 

efficient in such cases. Usage of models, along with the support to query those using relational algebraic 

operators makes the CMdB a valuable addition into the field. In the current form, our work is limited to convex 

models of data. Though the discrete domain has been explored, more work needs to be done to extend the 

database to support the non-convex models that arise thereof. Efficient applications to probabilistic 

representations encounters computational difficulties and further work is required to develop fast 

approximations. While our work is not limited to single stage decision problems, we have not currently applied 

it to multi-stage decision problems and that is a direction for future work. Additionally, applications to large 

real world problems involving other domains is the next natural step to this work. 
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