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Abstract: Previous investigations by the authors (Storey et al. 2006; Storey et al. 2009; Storey 2011) 
indicate that controlled suspensions are capable of being “soft” (have a low damping rate) under placid 
conditions, and “hard” (high damping rate) when required to improve “tracking” (staying close to the middle 
of and avoiding hitting suspension limits). The question arises then whether such suspensions are safe. On the 
one hand, vehicles have had relatively high mandated suspension damping rates after Ralph Nadar (1972) 
famously found that cars with soft suspensions were prone to rollover. On the other hand, improved isolation 
and tracking should make suspensions more resilient to destructive harmonics. 

The authors were curious to perform frequency analyses to compare fundamental linear controls against a 
simple piecewise linear system with controlled damping. This should be a good comparison of these systems 
since the frequency analysis of the linear systems is well known and very well understood.  

For our analysis we compared three controls, two linear and one piecewise linear. The two linear controls were 
the standard linear quarter-car model (here called the “linear passive” control) and the well-known skyhook 
control. It has been claimed by Reichert (Reichert 1997, pp. 12-3) that studies “indicate that the skyhook control 
is the optimal control policy in terms of its ability to isolate the suspended mass from the base excitations.”.  
Whether or not this is the case, it is clearly superior to the passive. The main disadvantage of the skyhook is 
that it cannot be implemented in full by a controlled damper in a semiactive suspension. In the experiments 
described below, however, we investigated the simplest damping control possible, in which the damper is either 
on or off. The damper turns off when the force from the damper would add to the magnitude of the chassis’ 
vertical velocity. This control was called the switched skyhook, for reasons explained below. Such a control 
should be a good test of stability. The advantage of this control over the skyhook is that it can be implemented 
by a controlled damper, such as the relatively cheap magnetorheological damper. 

Results of our numerical experiments show that the switched skyhook greatly improves on the linear passive. 
Figure 1 shows an example of transmissibility against frequency (as a proportion of the natural frequency). In 
this example each control has a damper with the same damping rate, 𝜁𝜁 = √2. As shown in Figure 1, the 
switched skyhook can greatly reduce the response amplitude (much less than one) at the resonant frequency, 
even with relatively high damping rates. It also provides a much smoother response at higher frequencies.  

 
Figure 1. Comparison of linear passive, skyhook and switched skyhook. 
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1. INTRODUCTION 

Simple harmonic motion is generally introduced using models in which the damper is attached to a stationary 
point. However, in practical suspension systems the disturbing force is often communicated to the suspended 
mass from a moving base. This is the case for a vehicle subject to road disturbances, but it also applies to 
buildings, bridges, or even seismographs. It applies also to truly “suspended” masses hung from a vibrating 
frame, as were the original horse-drawn buggies. In the remainder of this article, the term “suspension system” 
refers to systems that are excited by a moving base, and the terms “chassis” and “road” will often be used in 
place of the suspended mass and the base disturbance, as this aids visualisation. 

The important difference with a moving base suspension is that the damper contributes energy to the motion 
of the suspended mass for significant periods of time, sometimes it can add almost as much energy to the 
system as it dissipates. Passive suspensions have a wide range of frequencies at which there is no attenuation 
of road vibration, no matter how stiff the damper. This is easily seen from the transmissibility of the passive 
suspension, and the effects of this can be readily observed on a highway with vehicles moving up and down 
when encountering bumps causing the chassis to vibrate near the natural angular frequency of the main springs.  

In a semi-active control the parameters of otherwise passive components can be varied on a moment-by-
moment basis. While there has been a small amount of research into controlled springs, the overwhelming 
focus has been on controllable dampers, particularly magnetorheological dampers in vehicles. These tend to 
be much cheaper than active suspension systems, and they are easily integrated into a standard suspension.  

A controlled damper in a semi-active suspension can be made entirely dissipative, potentially making a semi-
active system more stable than the passive, (Reichert 1997; Song and Ahmadian 2004; Ahmadian et al. 2004; 
Storey et al. 2006). However, this has not been subject to the same kind of frequency analysis as is usual for 
passive suspensions. 

For the controlled damper to be fully dissipative, its damping coefficient must be reduced to zero in some parts 
of the suspension travel. But zero damping is unstable. Furthermore, it is theoretically possible to make a semi-
active system more unstable than the passive, if the control is badly designed. Finally, non-trivial semi-active 
systems are non-linear, and non-linear systems can show unexpected behaviour.  

2. BACKGROUND 

2.1. Suspension goals 

Suspension design is a multi-objective problem with three main goals: isolation (smoothness), tracking 
(following the road movement and not hitting suspension travel limits), and stability/safety (keeping the system 
free from greatly disturbing movement, especially resonances). Controlled suspensions can improve on passive 
systems by being soft where there is no danger of hitting against the suspension travel limits, and by being hard 
when tracking is a priority (Storey et al. 2006; Storey 2011).  

A control known as the “skyhook” has received a large amount of attention in the literature. Figure 2 compares 
the classic linear single degree of freedom (SDOF) passive suspension, Figure 2(a), with the skyhook basic 
linear SDOF skyhook suspension, Figure 2(b). Of course, the skyhook “is a purely fictional configuration, 
since for this to actually happen, the damper must be attached to a reference in the sky that remains fixed in 
the vertical direction” (Reichert 1997, p. 11). Modern controls routinely use accelerometer input, and the use 
of absolute position for control is not as unusual as it once was. The pure skyhook requires active components, 
such as hydraulic or electric actuators. 

 a)   b)  
Figure 2.  a) Passive suspension, b) skyhook suspension 
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It is claimed by Reichart that “most ... studies indicate that skyhook control is the optimal control policy in 
terms of its ability to isolate the suspended mass from the base excitations” (Reichert 1997, p. 12). Whether or 
not the skyhook is “optimal”, it is clear that its isolation is superior to the passive.  

There have been many researchers (Song and Ahmadian 2004; Song et al. 2003; Ahmadian et al. 2004; 
Paddison et al. 1994; Sims and Stanway 2003) including Reichart who have examined semi-active variants of 
the skyhook. Paddison et al. (1994, p. 602) state that a semi-active control using “feedback of the absolute 
velocity is often referred to as ‘skyhook damping’”. A more general characterisation has to do with the energy 
of the suspended mass. It is claimed that, “since the semiactive damper does not add any energy into the system, 
the system is stable” (Song et al. 2003, p. 227).  

The damper of a passive suspension can add energy to the vertical movement of a car chassis. Suppose, for 
instance, the sprung mass is moving upwards but the road height rate of change (base velocity) is moving 
upwards at a faster velocity than the chassis. The damping force will be upwards on the sprung mass, adding 
to its vertical velocity. To not add to the velocity of the sprung mass the damping rate must be set to zero. 
Similarly in the downward direction. Suppose we have a controllable damper with damping rate between a 
maximum value, 𝑐𝑐𝑀𝑀, and zero. Let 𝑥𝑥 be the chassis height, 𝑟𝑟 the road height, and 𝑑𝑑 = 𝑥𝑥 − 𝑟𝑟 is the damper 
extension. The condition that the damper adds to the sprung mass velocity is whenever the chassis velocity, 𝑥̇𝑥, 
and rate of change of damper length, 𝑑̇𝑑, are of opposite sign, sgn 𝑥̇𝑥 ≠ sgn 𝑑̇𝑑. The damper would always 
dissipate vertical chassis kinetic energy if the damper rate was zero whenever sgn 𝑥̇𝑥 ≠ sgn 𝑑̇𝑑. And the damper 
would dissipate vertical chassis kinetic energy at the maximum rate, at any one time, using the control,  

𝑐𝑐 = �𝑐𝑐𝑀𝑀, sgn 𝑥̇𝑥 = sgn 𝑑̇𝑑
0, sgn 𝑥̇𝑥 ≠ sgn 𝑑̇𝑑

  

This represents a relatively simple piecewise-linear control that will here be termed the switching skyhook. It 
is hypothesised that this control could improve over the transmissibility of the passive suspension.  

2.2. Transmissibility 

To study the transmissibility of the sprung mass system we use the natural frequency (also known as the natural 
resonant angular frequency, or the undamped angular frequency), 𝜔𝜔0, and the damping ratio, 𝜁𝜁, as defined in 
(1) and (2), where 𝑘𝑘 is the spring rate, 𝑚𝑚 is the sprung mass, and 𝑐𝑐 is the damping rate.  

𝜔𝜔0 ≜ �𝑘𝑘/𝑚𝑚  (1) 
𝜁𝜁 ≜ 𝑐𝑐

2√𝑘𝑘𝑘𝑘
  (2) 

The differential equation of motion then takes the form of (3), where a variable, 𝑝𝑝, allows us to represent the 
passive response, 𝑝𝑝 = 1, and the skyhook, 𝑝𝑝 = 0, in the one equation.  

𝑥̈𝑥 + 2𝜁𝜁𝜔𝜔0𝑥̇𝑥 + 𝜔𝜔0
2𝑥𝑥 = 2𝑝𝑝𝑝𝑝𝜔𝜔0𝑟̇𝑟 + 𝜔𝜔0

2𝑟𝑟  (3) 

Let us represent road height 𝑟𝑟 as a phasor, 𝑟𝑟 = 𝑅𝑅𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖,and the chassis height is represented as 𝑥𝑥 = 𝑋𝑋𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖. The 
transmissibility is given by, 

𝑋𝑋
𝑅𝑅

=
𝑖𝑖2𝑝𝑝𝑝𝑝 𝜔𝜔

𝜔𝜔0
 +1

1+𝑖𝑖2𝜁𝜁 𝜔𝜔
𝜔𝜔0
−� 𝜔𝜔𝜔𝜔0

�
2  

The transmissibility plots of Figure 3 show the response of the passive in Figure 3(a) and the response of the 
skyhook in Figure 3(b). These graphs show transmissibility as a function of the ratio of the road frequency over 
natural frequency, 𝜔𝜔/𝜔𝜔0. The damping ratios shown in this graph, from softest to hardest, are, 0.02, 0.2, 0.4, 
�1/2, 1, √2, 2.5, and 25. The 𝑥𝑥-axis represents frequency as a multiple of natural frequency, and the 𝑦𝑦-axis 
represents the amplitude of the chassis movement as a multiple of the road amplitude. The vertical dashed line 
shows the natural frequency. 

Note that the passive amplifies the road movement for all damping rates at frequencies below √2 times the 
natural frequency. Vehicles can be readily observed on highways heaving with displacement larger than a road 
disturbance at a frequency that is close to the natural frequency of its springs. “For most automobiles, the heave 
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natural frequency of the sprung mass is usually 1.0hz to 2.0hz” (Miller 1998, p. 2047). In the past, many cars 
were produced that set damping coefficients very low, giving the car a smooth, “luxurious” ride feel because 
they increased isolation at high frequencies, as can be seen in Figure 3(a). In fact, the cars tended to suffer from 
“tuck under”, wheel hop, and even rollover, especially when cornering. With the skyhook, there is no 
compromise between isolation at higher frequencies and isolation at lower frequencies, at least for damping 
rates above 0.707. 

a)    b)     

Figure 3.  a) Passive suspension transmissibility, b) skyhook suspension transmissibility 

Figure 3(b) shows that the skyhook “can isolate even at the resonance frequency” (Reichert 1997, p. 12). The 
skyhook clearly reduces dangerous movements around the natural frequency, even with relatively soft damping 
rates, ζ=0.707 (�1/2). And its isolation at higher frequencies is clearly superior to the passive. “This is 
encouraging since we have removed the tradeoff associated with passive dampers” (Reichert 1997, p. 12) 

2.3. Piecewise-Linear, Switching Skyhook 

For a given mass and spring rate, the damping ratio, 𝜁𝜁, is proportional to the damping rate, 𝑐𝑐, so the switched 
skyhook control can be expressed as (4). An example of a switched skyhook trajectory is shown below in 
Figure 4. Figure 4(a) shows the sinusoidal road height and chassis height. The chassis has been lifted by 1 to 
make the diagram less cluttered, and to make it correspond more intuitively with a vehicle body moving above 
a road. 

𝜁𝜁(𝑡𝑡) ≜ �𝜁𝜁, sgn 𝑥̇𝑥 = sgn 𝑑̇𝑑
0, sgn 𝑥̇𝑥 ≠ sgn 𝑑̇𝑑

 (4) 

a)  b)  

Figure 4.  Switched skyhook: a) Chassis response and road.  b) Chassis response and chassis velocity. 
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In this example, 𝜁𝜁 = 2. In Figure 4(b) the chassis velocity, 𝑥̇𝑥, is shown for comparison. The other parameters 
of this example are as follows: the road amplitude is one with a phase shift of zero, the initial time is taken as 
𝑡𝑡0 = 0.2778 seconds, and we have 𝑥𝑥(𝑡𝑡0) = 0.5 and 𝑥𝑥(𝑡𝑡0) = −0.5. Furthermore, 𝜔𝜔0 = 1.5, and 𝜔𝜔 = 1.8.  

In the simulations exact piecewise linear solutions were found (using the Maple software package). The 
behaviour of the system is similar to the purely linear system in that there is an initial “transient”, and the 
system settles down to an approximate “steady state”. In initial simulations the authors attempted to determine 
the exact point at which the control would switch, however, when the chassis velocity was low, 𝑥̇𝑥 ≈ 0, the 
control would switch rapidly, attempting to keep the velocity low, as seen in Figure 4(b). The authors 
experimented with various subtle controls that might “flatten out” this jitter, but it was decided to keep the 
experiments purely piecewise linear and use a very small step size.    

 
Figure 5.  Inverse switched skyhook. Chassis movement is represented by the line of increasing amplitude. 

It is relatively easy to show that it is not generally true that, “since the semiactive damper does not add any 
energy into the system, the system is stable.” (Song et al. 2003, p. 227). Figure 5 plots what could be referred 
to as the inverse switched skyhook. This uses the control of (5), which perversely increases the magnitude of 
chassis vertical velocity wherever possible, and switches to zero rather than decrease it. 

𝜁𝜁(𝑡𝑡) ≜ �0, sgn 𝑥̇𝑥(𝑡𝑡) = sgn 𝑑̇𝑑(𝑡𝑡)
𝜁𝜁, sgn 𝑥̇𝑥(𝑡𝑡) ≠ sgn 𝑑̇𝑑(𝑡𝑡)

 (5) 

In this case the damper is never dissipative. It is then not strictly true that controlled damping always improves 
stability. However, it should be possible to analyse controls for stability by analysing the tendency of the 
damper to reduce vertical chassis velocity. 

3. METHOD 

 
Figure 6.  Chassis movement with “transient”. The chassis is raised above the road for ease of interpretation. 
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To produce analogs of transmissibility plots for the switched skyhook, it is necessary to find the “steady state” 
response. For example, in Figure 6 the chassis movement settles on a repeated pattern after an initial period. 
The black boxes represent extremes of chassis height (determined algebraically in Maple 12). After reaching 
equilibrium the “transmissibility” was determined from these extremes. This was done for a number of 
damping rates and a range of frequency ratios. (The computations were performed in Maple using closed-form 
results where possible.) 

To find the amplitude of the steady-state response numerically, the challenge is to estimate when the “transient” 
might die down. It was observed in numerical experiments that the “transient” time was of the same order as 
the transient for the larger damping rate. The transient has a time constant of the order of,  

𝜏𝜏 ≈

⎩
⎨

⎧
1

𝜁𝜁𝜔𝜔0
, 𝜁𝜁 < 1

1

𝜔𝜔0�𝜁𝜁−�𝜁𝜁
2−1�

 , 𝜁𝜁 ≥ 1  

A simpler, more conservative approximation to these is given by, 

𝜏𝜏 ≈ �
1

𝜁𝜁𝜔𝜔0
, 𝜁𝜁 < �1/2

2𝜁𝜁/𝜔𝜔0 , 𝜁𝜁 ≥ �1/2
  

The numerical computations would then wait for several time periods for the “transient” to die down and then 
average the amplitude of a number of “steady state” oscillations.  

4. RESULTS 

Various responses of the switched skyhook are plotted for different values of 𝜁𝜁 in Figure 6(a), giving curves 
that looks similar to those of the linear skyhook. The amplitudes for very low road frequencies take an 
extremely long time to calculate, but it is clear that the curves converge at the point (0,1), as do the curves for 
the passive and the skyhook (compare with Figure 3).  

Figure 7(a) shows that the switching skyhook has much superior isolation to the passive, both at the higher 
frequencies but, importantly, also around the natural frequency. The values used for 𝜁𝜁 here are the same as 
used earlier, except that the largest value is 𝜁𝜁 = 4 rather than 25 (the numerical solution with larger values 
takes an exceedingly large amount of time). 

a)  b)  

Figure 7.  Frequency response for the switched skyhook. a) Various values of ζ. b) Comparison with passive 
and skyhook. 

Figure 7(b) shows the switched skyhook compared against the linear passive and the linear skyhook, each with 
𝜁𝜁 = √2. For the most part, the response lies between that of the passive and the skyhook. For even relatively 
moderate damping ratios, the switched skyhook does not resonate around the natural frequency and greatly 
decreases movement. It also has much better isolation at high frequencies. 
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5. CONCLUSION 

The results show that the switched skyhook has the potential to improve suspension stability and safety using 
semi-active control. While semi-active controls have the potential to not only improve isolation and tracking 
they can also improve stability.  

The jitter that is shown near the points that chassis velocity is zero, discussed above, could cause some 
discomfort because it is accompanied by sudden changes in force. A solution to this is to modify the control to 
anticipate such points and reduce the damping rate accordingly. Such a modification has been discussed 
previously by the authors (Storey et al. 2012, pp. 397-9). This period in the cycle is not generally critical in the 
reduction of chassis vertical velocity in any case. 

Another possible simple modification to this control, especially for high-frequency road disturbances is to keep 
the damping rate low in relatively safe conditions, where 𝑟𝑟, 𝑥𝑥, 𝑑𝑑 and their velocities are very low. Most road 
undulations and most disturbances are small at high frequencies (Cole 2001), although they can be associated 
with large accelerations and great discomfort. A suspension able to remain soft under these conditions will feel 
much more comfortable than the passive. 
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