
A functional strategy for nonlinear functionals
   R. S. Anderssen a, B. Haak b and M. Hegland c

aData61 CSIRO, Canberra, Australia
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Abstract: The linear functional strategy introduced by the first author in 1986 provided a  shift in the way 
inverse problems were solved. It is based on the fact that for applications one is interested in specific properties 
of the solution of an inverse problem. These properties or quantities of interest are usually obtained by applying 
a functional to the solution of the inverse problem. The linear functional strategy avoided the need to solve 
the full inverse problem by solving the adjoint problem for the functional instead. The solution to this adjoint 
problem is a functional which, when applied to the data returns the quantity of interest. In some cases, the 
adjoint problem can be solved exactly. In any case, the adjoint problem does not need to deal explicitly with 
data errors.

In this paper we review the original approach. It is noted that any method which is able to produce an approx-
imation to the solution of the adjoint problem which is continuous leads to a linear dependence of the error in 
the quantity of interest with respect to the data error.

Most of the paper considers the application of advances in computational and applied mathematics in the last 
30 years to the functional strategy. We define a general (nonlinear) functional strategy and illustrate how this 
problem is solved. We define a  generalised adjoint problem for nonlinear functionals and inverse problems. 
This adjoint problem is shown to be linear. Furthermore, we observe that nonlinear functionals which are 
Lipschitz continuous are stable with respect to data errors. The solution of the adjoint problem constrained to 
Lipschitz continuous functionals leads to Tikhonov regularisation.

We indicate how to implement the functional strategy for a simple example and provide links to modern 
functional analysis.
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1 THE FUNCTIONAL STRATEGY

Many applied inverse problems are of the form:

• Determine q = φ(u) (a quantity of interest) where φ is a given functional and where u is the solution of
a (usually ill-posed) equation F (u) = f for some data f .

The functional strategy solves this problem by introducing a functional θ which computes the quantity of
interest q directly from the data by q = θ(f). From the definition of q and the equation F (u) = f one then
gets an equation relating θ to φ as

θ(F (u)) = φ(u). (1)

If one can find a Lipschitz continuous functional θ which solves equation (1) then one has solved the applied
inverse problem. By the Lipschitz continuity of θ measured data fδ satisfying ‖fδ − f‖ ≤ δ can replace f in
the evaluation of θ and one gets qδ = θ(fδ) satisfying

|qδ − q| ≤ Lθ δ

where Lθ is the Lipschitz constant of θ. In practice one often faces two challenges:

i. θ can not be determined explicitly;
ii. the Lipschitz constant Lθ is large or even infinite.

We will in the following discuss how these challenges can be overcome. While we do not have the space to dis-
cuss the numerical solution in detail, we remark that all numerical approximations reduce both the functional
φ and the the operator F to finite dimensional approximations φh and Fh, respectively. Rather than discussing
the impact of this discretisation we will here assume that the original φ and F are finite dimensional, as are u
and f .

An alternative to the functional strategy consists of solving the inverse problem F (u) = f for the data fδ using
a nonlinear inverse problem solver. Then q is approximated by evaluation of the functional for the regularised
solution uα, i.e., q ≈ φ(uα). The functional strategy has practical advantages over this approach while it
seems to compare favorably regarding accuracy:

• the determination of θ can be done offline independently of the data using substantial computational
resources
• once θ is known, it can be evaluated relatively efficiently and this approach is thus suitable to online

delivery, for example in control systems, the operating theatre and on exploration vehicles
• while further investigation of the accuracy of the approach needs to be done, our initial computational

simulations suggest that in most cases the functional strategy performs as well as the approach based on
regularisation of the inverse problem
• the alternative approach does not take any properties of φ into account but this has been addressed by

Louis (1996) and Mathé and Pereverzev (2002).

1.1 The linear functional strategy

The functional strategy sketched above was originally introduced in Anderssen (1986) for the case of linear
functionals φ and linear operators F ; see also Anderssen (2004). In the finite dimensional case one then has
u ∈ Rd and f ∈ Rn. The quantity of interest is then q = φ(u) = bTu for some b ∈ Rd and f = F (u) = Au
for A ∈ Rn×d. If θ(f) = cT f , equation (1) takes the form cTAu = bTu which is satisfied for all u if

AT c = b. (2)

In practice, the dimension d of the approximation space does not have to be equal to the data size n thus
equation (2) typically does not have a unique solution. One may use the least squares solution with minimal
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norm which is c =
(
AT
)+
b. As the norm of c is equal to the Lipschitz constant of the functional θ the

minimal norm solution chooses the most stable functional from the ones which minimise the norm of the
residual AT c− b. However, even this choice might lead to a norm which is too high. One thus might wish to
trade off some error in the equation to get better stability. Assuming that we accept a Lipschitz constant L for
the functional one gets the following quadratic optimisation problem with a quadratic constraint for c:

• Minimise ‖AT c− b‖2 under the constraint ‖c‖ ≤ L.

The solution of this problem amounts to Tikhonov regularisation and one has the approximation

c = (AAT + λI)−1Ab (3)

for some parameter λ > 0 which is obtained from the constraint and depends on the Lipschitz constant desired.

1.2 A polynomial functional strategy

As in the linear case we consider u ∈ Rd and f ∈ Rn. The functionals φ and θ are here polynomials in u and
f . For example, one has

φ(u) =
∑
α∈I

bαu
α = bTu

where α = (α1, . . . , αd) is a multi-index and uα = uα1
1 · · ·u

αd

d . The sum is over a finite set
I ⊂ Nd. The vectors b = (bα)α∈I and u = (uα)α∈I are elements of RI . The same notation is used for the
functional θ

θ(f) =
∑
β∈J

cβf
β = cT f

where J ⊂ Nn and c and f are elements of RJ . The operator F is also assumed to be polynomial, i.e., the i-th
component fi = Fi(u) is a linear combination of uα. It then follows that fβ is a linear combination of powers
uα and thus we can introduce a matrix A ∈ RI,J such that fβ =

∑
α∈I Aβ,αu

α or in matrix notation

f = Au.

Like in the linear functional strategy one then has

θ(f) = cT f = cTAu

and from this we get

AT c = b. (4)

Note the difference between the polynomial and the linear case: the polynomial functionals are linear in the
vector u of monomials uα but nonlinear in the vector u of components ui. The functionals are differentiable
which is useful for the determination of the Lipschitz constants. As θ is differentiable, the Lipschitz constant
of θ is equal to the maximal norm of the gradient. The squared norm of the gradient of θ(u) is

‖∇θ(f)‖2 =
n∑
i=1

∑
β

βicβf
β−ei

2

=
∑
β,γ

cγMγ,β(f)cβ

where

Mβ,γ(f) =
n∑
i=1

γiβif
β+γ−2ei
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and where ei is the standard basis vector with all components zero except for the i-th component which is one.
It then follows that the Lipschitz constant of θ is bounded by

Lθ ≤ sup
f∈dom(θ)

‖M(f)‖ ‖c‖

where the matrix M(f) ∈ RJ,J has the matrix elements Mγ,β(f).

A simple regularised solution of equation (4) is then

c =
(
AAT + λI

)−1
Ab.

2 A SIMPLE EXAMPLE

To illustrate our new approach we use a simple finite dimensional example. The data is obtained from dis-
cretising the Volterra integral equation

∫ x
0
u(t) = f(x) to get a linear system of equations for the vector of

values of u at equidistant grid points. (We denote this vector also by u and similarly for f .) The quantity of
interest is the squared L2 norm of u.

Here u, f ∈ Rd such that Au = f where A ∈ Rd,d. Furthermore let q = φ(u) = uTBu for some symmetric
matrix B. We approximate q by θ(fδ) with θ(f) = fTCf and where fδ is an observed version of f with a
data error such that ‖fδ − f‖ ≤ δ. The error of this approximation is then

|θ(fδ)− φ(u)| ≤ |θ(fδ)− θ(f)|+ |θ(f)− φ(u)|.

The error relating to the data error is bounded by

|θ(fδ)− θ(f)| ≤ 2‖C‖F ‖f‖δ + ‖C‖F δ2

and the approximation error is (as f = Au)

|θ(f)− φ(u)| ≤ ‖ATCA−B‖F ‖u‖2.

We use a nonlinear optimisation solver to determine C which miminises the objective

Ψ(C) = ‖ATCA−B‖2F

and satisfies the constraint

‖C‖F ≤ L

for some appropriate L. L is chosen depending on the data error. Computational tests have shown this method
to perform as well as the conventional method based on solving Au = f for observed data fδ using regulari-
sation.

Consider now the special case obtained from discretising the functional φ(u) =
∫ 1

0
u(s)2 ds and the Volterra

integral equation
∫ t
0
u(s) ds using the midpoint quadrature rule. Specifically, we will consider the matrix

B = hI ∈ Rn,n

where h = 1/n and A ∈ Rn,n is a lower triangular matrix with nonzero elements ai,j = h. The problem is
then to minimise the Tikhonov functional

1

2
‖ATCA−B‖2F + α‖C‖2F

that is, computing the matrix C for given A and B.

We have implemented this using the singular value decomposition of A:

A = UΣV T .

Introducing X = UTCU and Z = V BV T we get a transformed functional for X:

‖ΣTXΣ− Z‖2F + α‖X‖2F
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Figure 1. Lipschitz constant as function of α

or with x = vec(X) and z = vec(Z) we get a functional for x:

‖Σ⊗ Σx− z‖2 + α‖x‖2.

The minimiser of this functional is

x =
(
Σ2 ⊗ Σ2 + αI

)−1
Σ⊗ Σ z.

We have solved this for multiple values of α and in figure 1 we display the Lipschitz constant Lθ as a function
of the regularisation parameter α. One can see that even with a small regularisation parameter one gets no
error amplification (Lipschitz constant one).

3 A FUNCTIONAL STRATEGY FOR GENERAL LIPSCHITZ CONTINUOUS FUNCTIONS – SOME MATH-
EMATICS

The mathematical theory of the functional strategy relies on functional analysis. In particular, we consider
here a Hilbert space H and a dense subspace V ⊂ H . Let F ∈ Lip(H,V ) be injective and F (0) = 0. Note
that inverting F is a nonlinear ill-posed problem and in general, the extension of F−1 to H is unbounded.
Using the natural inclusion one can interpret F as an element of Lip(H,H) which we will also call F .

Following Benyamini and Lindenstrauss (2000), we introduce the space of Lipschitz continuous functionals

H] = {θ ∈ Lip(H,R) : θ(0) = 0}.

Endowed with the Lipschitz norm

‖θ‖H] = supf 6=g
|θ(f)− θ(g)|
‖f − g‖

the space H] becomes a Banach space.

We now assume that we are given an F as specified above and a φ ∈ H]. The inverse function strategy aims
to determine a functional θ ∈ H] such that

θ(F (u)) = φ(u), for all u ∈ H.

We now introduce the (linear) pullback operator F ] : H] → H] with

(F ]θ)(u) := θ(F (u)), u ∈ H.

Notice that F ] is a bounded linear operator as:

‖F ]θ‖H] ≤ supu6=v
θ(F (u)− F (v))

‖u− v‖
≤ LF ‖θ‖H] .
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Thus one has the linear ill-posed problem

F ]θ = φ

for the determination of θ given φ and F ].

The Hilbert space framework is useful to define a sampling approach to solve this problem. In particular we
define a Gaussian measure on H using an appropriate covariance operator and samples u(i). We choose the
covariance to model the (smoothness) of our expected functions u ∈ H . We then apply F to get y(i) = F (u(i))
for i = 1, . . . ,m. Then an approximation to θ is obtained from minimising the objective

Ψ(θ) =
1

m

m∑
i=1

(θ(y(i))− φ(u(i)))2

combined with the constraint on the Lipschitz norm

‖θ‖H] ≤ C.

As usual, the least squares sum is the empirical surrogate for the expected squared deviation

E
[
(θ(Y )− φ(U)2

]
=

∫
(θ(F (u))− φ(u))2p(u)du.

Here U and Y = F (U) are the random variables underlying the samples and p(u) is the normal density
function of U . Note that this is a quadratic optimisation problem with a quadratic constraint.
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