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Abstract:   Accurate plant identification is a skill that generally requires considerable knowledge and 
advanced training. However, plant identification is useful to a broad range of people within society, from 
conservationists and farmers to citizen scientists. Access to accurate, widely available knowledge 
about the identity and distribution of living species is critical for biodiversity conservation and sustainable 
development. 

Automated plant identification has undergone major advances since 2012 with the application of 
convolutional neural networks (CNNs) from the emerging field of deep learning. This branch of machine 
learning has shown remarkable accuracy in image classification and visual object recognition when applied 
to still images through competitions such as the ImageNet Large Scale Visual Recognition Challenge. 

This research project used transfer learning to fine-tune pre-trained deep learning CNNs originally 
developed for the ImageNet challenge, such as Inception and ResNet, which are publicly available through 
Tensorflow Hub. The models were applied to the automated identification of images of plants extracted 
from the Australian National Botanic Gardens Australian Plant Image Index and validated using additional 
images from the Atlas of Living Australia (ALA) and other Internet sources. 

A comparison of model performance was undertaken using three different datasets: whole plant images 
(9,612 images of 392 species with at least 20 images per species), images of flowers (3,384 images of 
271 species with at least 10 images per species) and scanning electron microscopy images of liverwort 
spores from Fossombronia spp. (322 images of 12 species with at least 10 images per species).  

To decrease the risk of overfitting and extend the training dataset, data augmentation techniques such as 
scaling and reflection were tested to identify a high performing method, which also improved 
overall model performance. The best performing model for the All-plants (80.6% accuracy) and Flower 
datasets (88.4% accuracy) was Inception_V3 pre-trained on the iNaturalist dataset of plants and animals. For 
the Fossombronia spp. dataset, the best performing model (81.2% accuracy) was ResNet_V2-50 pre-trained 
on ImageNet 2012, using the 50-layer implementation of ResNet_V2. The best performing flower 
identification model was also shown to have some proficiency in identifying the genus of an unknown 
species, where the genus but not species was represented in the dataset, with a Top-5 accuracy of 66%. 
The Flower dataset’s best model performance was further tested using 1,000 images (20 images of 50 
randomly selected species) downloaded from the Atlas of Living Australia and the Internet which produced 
a Top-1 accuracy of 85.9%. 

Questions that remain to be addressed include further testing of data augmentation approaches and 
more comprehensive analysis to exclude overfitting. An interesting future extension of this study would be 
to train the best performing model on a larger dataset of Australian plant images, which could be used to aid 
scientists and the general public in identifying unknown species through image upload using an online 
website or phone app.  
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1. INTRODUCTION 

Plant identification is a skill requiring considerable knowledge, with an associated high barrier to entry for 
novices interested in gaining taxonomic understanding. Its accurate application is generally the preserve of 
expert taxonomists, botanists and plant ecologists. However, plant identification is useful for many diverse 
groups within society, such as farmers, conservationists, foresters, gardeners and citizen scientists (Wäldchen 
and Mäder, 2018). Bridging the taxonomic gap to build accurate, generally available knowledge of the identity 
and distribution of living species is critical for biodiversity conservation and sustainable development. 

Automated plant identification has undergone major advances since 2012 with the application of convolutional 
neural networks (CNNs) from the emerging field of deep learning (LeCun et al., 2015). This branch of machine 
learning, originally from the computer vision discipline, has shown remarkable accuracy in image classification 
and visual object recognition when applied to still images, through competitions such as the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC)1. CNNs are designed to process data that comes in the form of 
multiple arrays and have been applied to processing of many types of 2D images (e.g. medical, biological, 
remote sensing), as well as 3D video, and 1D speech, audio and text data (LeCun et al., 2015). Use of deep 
learning CNN models to identify images of flowering plants from Australia was the main focus of this research 
project. 

There are already several apps and associated web sites that support plant identification using deep learning, 
such as PlantSnap and PictureThis (commercial) and PlantNet, LeafSnap and iNaturalist (free). However, from 
limited testing, they do not currently support Australian native plants to any significant degree. The Atlas of 
Living Australia (ALA) has recently signed an agreement with iNaturalist2 for the automated identification of 
user-submitted plant images, so this situation is rapidly changing (Andre Zerger, pers. comm., 2019). 

Leaf shape is the most studied characteristic for plant identification (Wäldchen and Mäder, 2018). Ghazi et al. 
(2017) compared the efficacy of different convolutional neural network models in classification using training 
images of plants from LifeCLEF 2015. The PlantCLEF 20153 dataset, one of three components of LifeCLEF 
2015, is composed of 113,205 images belonging to 41,794 observations of 1,000 species of trees, herbs and 
ferns living in Western European regions (Joly et al., 2015). These images are focussed on different plant 
morphological components such as flowers, fruits, leaves, branches and stems, as well as very detailed leaf 
scans and images of the entire plant. After data augmentation using the best performing models (GoogLeNet 
and VGGNet), Ghazi el al. (2017) reported that leaf scans produced the best results (98% accuracy) followed 
by images of flowers (87% accuracy) and fruit (79% accuracy), with images of the entire plant producing 
accuracies of 65%. 

2. METHODOLOGY 

The Atlas of Living Australia (ALA), part of the nation’s research data infrastructure, compiles and makes 
available Australian biodiversity data from many sources and includes about 85 million occurrence records for 
over 121 million species4. One component of ALA is the Australian Plant Image Index (APII) sourced from 
the Australian National Botanic Gardens (ANBG). Using the ANBG interface to APII5, it is possible to easily 
extract subsets of these records including, for example, all images of plants in flower through a search for 
Subject Part=”Flowers”. 

A download from APII on 6 June 2019, excluding some images such as herbarium specimen records, Flora of 
Australia illustrations, and National Seed Bank images, yielded 29,563 digital images of plants where the 
dominant subject was flowers for 9,559 different species. In the download, there were 271 species with 10 
images or more, which is the minimum suggested in the literature for training a deep learning model using 
transfer learning. These 3,385 images of 271 species were used to undertake an experiment in training CNNs 
to identify flowering plants. In addition to the Flower dataset, a download of all plant images from APII was 
also undertaken which yielded 78,477 records of 14,295 species, of which 392 had 20 or more images per 
species. Given the greater degree of difficulty in identification of entire plant images, as shown by Ghazi et al. 

                                                        
1 ImageNet Large Scale Visual Recognition Challenge (ILSVRC). URL: http://image-
net.org/challenges/LSVRC/. Accessed 24 July 2019. 
2 iNaturalist. URL: https://www.inaturalist.org/. Accessed 24 July 2019. 
3 LifeCLEF 2015 Plant task. URL: https://www.imageclef.org/lifeclef/2015/plant. Accessed 24 July 2019. 
4 Atlas of Living Australia. URL: https://www.ala.org.au/. Accessed 24 July 2019. 
5 Australian Plant Image Index, Export Metadata. URL: http://anbg.gov.au/cgi-bin/apii-export-metadata. 
Accessed 24 July 2019.  
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(2017), the cut-off for inclusion in this ‘all-plants’ dataset was set at 20 images to improve the chances of 
building a good model. 

A third dataset of interest was identified within the downloaded records. These were scanning electron 
microscopy (SEM) images of spores from liverworts of Fossombronia spp. This dataset comprised 322 images 
of 12 species with 10 or more images per species. The number of species and images for the three datasets as 
well as splits between data augmentation, training, validation and test sets are shown in Table 1. 

Table 1. Datasets used to train convolutional neural network models from Tensorflow Hub*. 
Datasets All-plants Flower Fossombronia spp. SEM 
No. species 392 271 12 
No. images 9,612 3,385 322 
Average no. images per species 24.5 12.5 26.8 
No. data augmentation images 9,563 3,384 0 
No. training samples 16,039 (7,407) 5,685 (2,494) 251 
No. validation samples 1,568 (1,266) 542 (582) 39 
No. test samples 1,568 (939) 542 (309) 32 

* (Values in parentheses) indicate the number of images before data augmentation. 

TensorFlow Hub6 is a library for reusable machine learning modules that can be used for purposes such as 
image, text or video classification. The ImageNet challenge was the original source of training data for the 
models available for image classification on TensorFlow Hub. This project used several modules from the 
TensorFlow Hub model store to identify species from the three datasets in Table 1, with results compared to 
identify the model with the best accuracy. 

CNN image classification models generally have hundreds of thousands or millions of parameters (LeCun et 
al., 2015). Training them requires much labelled training data and extensive computing power (days or weeks 
and hundreds of GPU-hours computer time). Transfer learning is a technique that saves time and effort by 
taking the bulk of a model that has already been trained on a different set of images and re-using it in a new 
application (Donahue et al., 2013). Using transfer learning also greatly reduces the amount of labelled training 
data that is required to produce models with good accuracy.  

This study used the feature extraction capabilities (LeCun et al., 2015) from powerful image classifiers pre-
trained on ImageNet (Deng et al., 2009), to train a new classification layer on top using APII data. None of the 
APII species were in the original ILSVRC 2012 labelled classes on which the Tensorflow Hub models were 
trained. The 1,000 categories within the benchmark ILSVRC 2012 classification challenge validation set7 
traverse a very broad range of categories for images available on the Internet including, for example, miniature 
poodles, Siamese cats, catamarans, airliners and castles. The advantage of transfer learning is that only the top 
layer needs to be trained, which is a relatively rapid and computationally inexpensive process, and the overall 
model accuracy benefits from features discovered within lower layers trained to distinguish objects of a 
different type. Utilising transfer learning, a script first loaded the pre-trained module from Tensorflow Hub, 
then trained a new classifier on top for the flower photos and other datasets downloaded from APII. 

TensorFlow Hub models were run on a server with 8 processor 4 core Intel(R) Xeon(R) W-2123 CPUs @ 
3.60GHz running a single Titan XP GPU, typically taking an hour to several hours training time. Learning 
rates of 0.01 and 0.0001 respectively were used for the Gradient descent and Adam optimizers, with a training 
batch size of 100. Default input image sizes for the models tested ranged from 299x299 pixels for Inception_V2 
and Inception_ResNet_V2 models, to 224x224 pixels for Inception_V1, Inception_V2 and ResNet_V2 models 
but this study used larger input image sizes as outlined below. All models in this study were trained for 10,000 
iterations. The best performing models were trained again for 50,000 iterations to observe the effect on test 
accuracy. 

As the plant and flower training datasets include, respectively, only 10+ or 20+ example images for each 
species, data augmentation was undertaken to increase the number of images available for training the models, 
with the aim of improving model accuracy. For the small Fossombronia spp. dataset, data augmentation was 
not undertaken as these SEM images are very detailed, clearly distinguishable and cropping, mirroring and 
other data augmentation techniques were considered to be unnecessary. 

                                                        
6 TensorFlow Hub. URL: https://tfhub.dev/. Accessed 24 July 2019.  
7 ImageNet Large Scale Visual Recognition Challenge 2012 synsets. URL: http://image-
net.org/challenges/LSVRC/2012/browse-synsets. Accessed 24 July 2019. 
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APII includes three publicly available images for each record of a species: a low-resolution thumbnail 
(generally 192 pixels in its longest dimension), a medium resolution image (generally 384 pixels in its longest 
dimension) and a higher resolution image (generally 750 pixels in its longest dimension). All models in this 
study were trained using copies of the medium resolution image. The accuracy of deep learning models can be 
significantly improved through data augmentation, to generate additional training data, which helps prevent 
overfitting and improves the model’s understanding of dataset features (Perez and Wang, 2017). Examples of 
data augmentation include random image cropping, rotation, mirroring, translation, elastic distortions, addition 
of ‘salt and pepper’ noise, random changes to image brightness, contrast, hue, saturation, and conversion to 
grayscale (Perez and Wang, 2017, Ghazi et al., 2017). 

The best CNN models for flower identification were subjected to three additional checks to test the models 
against real-world data: 1,000 flower images downloaded from ALA and the Internet comprised of 20 examples 
of 50 randomly selected species from the Flower dataset; 50 images of taxa where the genus but not species 
was in the Flower dataset; and 50 images of unrelated species not found in the Flower dataset. 

3. RESULTS AND DISCUSSION 

Existing convolutional neural network models from the Tensorflow Hub were trained using data from the 
ANBG Australian Plant Image Index (APII). Eight models were tested against the three datasets with results 
shown in Table 2. The best performing model for the All-plants (80.6% accuracy) and Flower datasets 
(88.4% accuracy) was Inception_V3 pre-trained on the iNaturalist dataset of plants and animals8. 
Inception_V3 is a convolutional neural network architecture for image classification, originally published by 
Szegedy et al. (2015). The weights for this model were obtained through training described by Cui et al. 
(2018) on the iNaturalist (iNat) 2017 dataset described by Van Horn et al. (2017), after initial training on 
ILSVRC 20127. The iNat2017 dataset consists of 579,184 training images and 95,986 validation images for 
5,089 species obtained from the iNaturalist web site2. Images were collected by citizen scientists from around 
the world using different camera types, have variable image quality and the dataset features a large class 
imbalance (‘long tail’ distribution) of species images. It is perhaps not unexpected that this dataset, pre-
trained to recognise features in hundreds of thousands of images of plants and animals, showed the highest 
test accuracy when re-trained using APII data. This result is consistent with published studies such as Cui et 
al. (2018) which observed better transfer learning performance when fine-tuning models from a more similar 
source, described in terms of their ‘domain similarity’. 
 
Table 2. Test accuracies (%) for models obtained from Tensorflow Hub trained using three datasets*. 

Model All-plants Flower Fossombronia spp. SEM 
Optimizer: Adam Adam Gradient descent Gradient descent 

Inception_V3 50.2 (36.3) 57.7 (52.1) 52.6 (48.2) 62.5 
Inception_V3 iNaturalist [80.6] 79.8 (62.2) [88.4] 88.0 (80.3) [86.5] 86.2 (79.3) 59.4 
Inception_ResNet_V2 44.4 55.5 45.8 65.6 
Inception_V2 41.3 56.6 49.4 65.6 
Inception_V1 42.3 55.9 51.1 75.0 
ResNet_V2-50 47.9 55.4 54.1 [81.2] 81.2 
ResNet_V2-101 50.0 55.9 52.8 68.8 
ResNet_V2-152 46.2 54.4 53.0 59.4 

* (Values in parentheses) indicate results before data augmentation. [Values in brackets] 
indicate model test accuracies after 50,000 training iterations. All other values are 
model test accuracies after 10,000 training iterations. Best results highlighted in bold. 

For the Flower dataset, two optimizers were tested: the Gradient descent optimizer and the Adam optimizer 
originally developed by Kingma and Ba (2014). The Adam optimizer offers several advantages to the gradient 
descent optimizer, the foremost being that it uses moving averages of parameters such as momentum in order 
to converge more quickly on the set of weights for the neural network. However, Adam has recently been 
criticized for not always converging on the optimal solution and results may not generalise as well as for 
gradient descent despite have better training performance (Wilson et al., 2017). For the Fossombronia spp. 
dataset, the best performing model (81.2% accuracy) was ResNet_V2-509 pre-trained on ILSVRC 20127. 
ResNet_V2 is from a family of convolutional neural network architectures for image classification with a 
                                                        
8 TensorFlow Hub, inaturalist/inception_v3/feature_vector. URL: 
https://tfhub.dev/google/inaturalist/inception_v3/feature_vector/3. Accessed 24 July 2019. 
9 TensorFlow Hub, imagenet/resnet_v2_50/feature_vector. URL: 
https://tfhub.dev/google/imagenet/resnet_v2_50/feature_vector/3. Accessed 24 July 2019. 

18



Boston and Van Dijk, Some experiments in automated identification of Australian plants using convolutional 
neural networks 

variable number of layers originally developed by He et al. (2016). This model incorporates a 50-layer 
implementation of ResNet_V2. 

Because the images in APII are highly curated with, for example, approximately 81% of the images in the 
Flower dataset taken by one individual (Murray Fagg), the image quality is generally good and subject parts 
are typically clear, centred and captured with good lighting and colour balance. Based on data augmentation 
tests, a simple central crop of 300x300 pixels from the higher resolution image mirrored vertically was added 
to the medium resolution images for the flower and all plant datasets. This doubled the number of images 
available per species and improved flower and all plant model accuracies using the Adam optimizer by 9.6% 
and 28% respectively as shown in Table 2. 

For the first additional test, 50 species of the 271 in the Flower dataset were selected at random. Twenty images 
for each species were downloaded from the ALA or other Internet sources and run against the best performing 
models. Care was taken to ensure the downloaded images were not from APII, showed flowers clearly, were 
from reputable sites where correct species identification was likely, and where image copyright allowed their 
use for research. Results for this test are in Table 3. Top-1 accuracy was 85.9%, slightly lower than obtained 
when training the model using the Adam optimizer (88.4%) and Gradient descent optimizer (86.5%), while 
Top-5 accuracy was 98.1%. It was expected that correct prediction scores (where the predicted species matches 
the actual species in the image) would be higher on average than incorrect predictions. This is borne out by the 
results shown in Table 3. Correct predictions have probabilities on average 84% greater for 1st prediction 
(N=859), 148% for 2nd prediction (N=76), 122% for 3rd prediction (N=30) and 120% for 4th prediction (N=10) 
showing, as expected, that the model produces higher probabilities when correctly identifying images. 
Interestingly, the best prediction results were obtained for a model trained using the Gradient descent optimizer 
rather than the Adam optimizer, though the differences were small: 1.6% for Top-1 accuracy and 1.1% for 
Top-5 accuracy. 

Table 3. Test of flower identification model (Inception_V3 iNaturalist 50K - Gradient descent optimizer) using 
1,000 flower images (20 images of 50 species) downloaded from ALA and the Internet. 

20 images of 50 species test Prediction #1 
correct 

Prediction #2 
correct 

Prediction #3 
correct 

Prediction #4 
correct 

Prediction #5 
correct 

No 
match 

Total 

Top-1 accuracy: 85.9% 859 76 30 10 6 19 1000 
Top-5 accuracy: 98.1% 85.9% 7.6% 3.0% 1.0% 0.6% 1.9% 100% 
Av. prediction non-matches 0.384 0.087 0.0395 0.024 0.0167   
Av. prediction matches 0.706 0.215 0.0876 0.0528 0.027   
Difference 0.322 0.129 0.0481 0.0288 0.0103   
Difference (%) 83.9% 148.3% 121.8% 120.0% 61.7%   

 

According to Russakovsky et al. (2015), human top-5 classification error rate on the large-scale ImageNet 
dataset is estimated to be 5.1%. Top-5 error rates for Australian plant identification by experts are not available 
but are likely to be significantly lower than this, perhaps as low as 1%. Given a Top-5 error rate of 1.9% of the 
best performing model, this suggests the model may be able to perform with an accuracy close to an expert 
human observer. Examination of the results for classification of 1,000 images suggested the model will have 
problems classifying images with which a human observer would also have difficulties. 

 
Figure 1. At left: images of Grevillea iaspicula from APII in the Flower dataset10. Test images at right: 
Grevillea_iaspicula13.jpg: pred. #1 Grevillea iaspicula P=0.621; Grevillea_iaspicula18.jpg: pred. #1 

                                                        
10 APII top row images, rights owner: Director of National Parks; bottom row images, rights owner: M. Fagg. 
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Rhodanthe pygmaea P=0.331, #2 Comesperma ericinum P=0.0568, #3 Eragrostis curvula P=0.0450, #4 
Lechenaultia biloba P=0.0265 and #5 Grevillea iaspicula P= 0.021911. 

For example, if the image is of the whole plant at a distance rather than individual flowers, the model will 
struggle to make a correct species identification, as demonstrated in Figure 1. The model identified the 
Grevillea iaspicula18.jpg image with its 5th prediction and a low probability (P=0.0219), probably because it 
was of the whole plant with flowers not clearly visible whereas the model correctly identified the closeup 
flower image Grevillea iaspicula13.jpg with its 1st prediction (P=0.621). 

The second additional test aimed to check if the best performing model had some ability to predict the genus 
of an unknown species (where the genus is part of the Flower dataset). This may be the case if flowers of 
different species within a genus are visually more similar than those of other genera. 50 related taxa were 
selected at random and images of their flowers run through a new model built using Inception_V3 iNaturalist 
for 10,000 iterations where images were grouped by the 197 distinct genera (=> class labels) in the Flower 
dataset. Results in Table 4 show that this model has some ability (Top-1 34% and Top-5 66% accuracy) in 
determining the genus for this small sample of 50 images of related species. 

Table 4. Test of flower identification model based on genera (Inception_V3 iNaturalist 10K - Gradient descent 
optimizer) using 50 images of taxa where the genus but not the species occurs in the Flower dataset. 

50 related taxa test Prediction #1 
correct 

Prediction #2 
correct 

Prediction #3 
correct 

Prediction #4 
correct 

Prediction #5 
correct 

No 
match 

Total 

Top-1 accuracy: 34% 17 8 5 2 1 17 50 
Top-5 accuracy: 66% 34.0% 16.0% 10.0% 4.0% 2.0% 34% 100% 
Av. prediction non-matches 0.256 0.0996 0.0573 0.0401 0.0295   
Av. prediction matches 0.571 0.1783 0.0664 0.0612 0.0318   
Difference 0.315 0.0787 0.0091 0.0211 0.0023   
Difference (%) 123% 79.0% 15.9% 52.6% 7.8%   

 

In Table 4 as in Table 3, it appears, from this small sample, that the average prediction scores for matches are 
higher than for non-matches: 123% greater for 1st prediction (N=17), 79% for 2nd prediction (N=8), 16% for 
the 3rd prediction (N=5) and 53% for 4th prediction (N=2). 

The third additional test checked what prediction scores the model would have on average for 50 images of 
taxa not in the Flower dataset. Unsurprisingly, as shown in Table 5, the average prediction scores are low as 
the model is not able to recognise these species. 

Table 5. Test of flower identification model (Inception_V3 iNaturalist 50K - Gradient descent optimizer) using 
50 images of taxa where neither the genus nor species are in the Flower dataset. 

Images of 50 species not in 
Flower dataset test 

Prediction #1  Prediction #2  Prediction #3  Prediction #4  Prediction #5  No match 

Number of matches 0 0 0 0 0 50 
Average prediction scores 0.262 0.108 0.0664 0.0445 0.0332  

For the Flower and All-plants datasets, test accuracies of models built using the Adam optimizer were 
marginally improved by 0.4% and 0.8% respectively after 50,000 iterations. For the Fossombronia spp. model, 
no improvement occurred when going from 10,000 to 50,000 iterations which suggests the model had already 
extracted all available information from the images after 10,000 iterations. To further test the sensitivity of the 
best performing model (Inception_V3 iNaturalist – Adam optimizer) to the selection of training, validation and 
test images, 20 datasets were created with randomly selected images making up each subset. Results showed 
good agreement across all 20 datasets with, for example, average test accuracies for the augmented Flower 
dataset of 86.3% with a standard deviation of 1.1% for a model built for 10,000 iterations. 

4. CONCLUSIONS 

This study applied transfer learning to identify plant species from the Australian Plant Image Index using 
convolutional neural networks. Results are encouraging, especially given the low average number of images 
per species, and suggest that models which have been pre-trained on related data from the same domain, such 
as iNaturalist, may generate good prediction results when applied to new species datasets. Results are 
comparable with published studies (e.g. Ghazi el al., 2017) using the PlantCLEF 2015 dataset. However, the 
risk of overfitting and a lack of generalisability of the models remains, despite encouraging test results for the 
Flower dataset using images obtained ‘in the wild’. The best countermeasure to overfitting is obviously training 

                                                        
11 Grevillea_iaspicula13.jpg rights owner: Janine Hunstone; Grevillea_iaspicula18.jpg rights: Magnus Manske. 
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using a greater number and range of images, while the application of more extensive data augmentation and 
tools such as K-fold cross-validation would also be of use. 

Future areas of investigation could include expansion to a larger number of images for a greater range of 
Australian plants from sources such as ALA or Australian herbaria, exploration of other data augmentation 
techniques and more comprehensive testing to exclude overfitting. Development of an online version allowing 
upload and identification of images or an equivalent phone app would be an interesting additional development. 
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