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Abstract: Until recently, the wavelet transform has been used for Mathematical analysis and signal 
processing problems. But it suffers from the disadvantage of poor directionality, which has undermined its 
usage in many applications. The curvelet transform is a new extension of the wavelet transform, which aims 
to deal with intersecting phenomena occurring along curved edges in 2-D signals/images. In this work, a 
strong relationship between the curvelet and wavelet transforms has been established. This version of a 
wavelet based curvelet has been exploited to develop a full-fledged analytical framework, presenting it as an 
extension of well established wavelets. Due to computational complexity, instead of applying a curvelet 
directly, the curvelet in terms of wavelets has been employed more conveniently in the proposed signal 
denoising model. Finally, the performance factor analysis is performed on multispectral sample radar image 
data to demonstrate the efficiency of the proposed model. Besides computational gain, the proposed model 
shows better performance than the other signal processing models. Proposed model is equally applicable to 
both pulse signals and digital images. 
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1. INTRODUCTION 

Multiresolution techniques are deeply related to signal/image processing, biological and computer vision 
detection, scientific computing, optical data analysis (Bhosale and Biswas, 2013). In these techniques, 
wavelet functions are used as a basis with an objective to specify the signal as a collection of its successive 
approximations (Beylkin, 1992). In 1982, Jean Morlet (Young, 1995), a French geophysical engineering, first 
introduced the idea of the wavelet transform as a new mathematical tool for seismic data analysis. The 
wavelet transform decomposes a signal into a representation that shows signal details and trends as a function 
of time (Lokenath, 1998). However, the wavelet transform suffers from orientation selectivity in edge data of 
higher dimensional signals. 

 In 1999, an anisotropic geometric wavelet transform, named the ridgelet transform, was proposed by Candes 
and Donohe (1999). To analyze local line or curve singularities, an image or signal is partitioned into sub-
images, and then to the ridgelet transform is applied to the so obtained sub-images. This block ridgelet based 
transform, named the curvelet transform, was first proposed in 2000 and underwent several modifications 
(Candes and Donoho, 2005). The emergence of the curvelet transform has overcome the problem of 
orientation selectivity encountered in wavelet analysis when used in in feature representation in different 
areas of signal/image processing, fusion applications like satellite imaging, remote sensing, and multi-focus 
imaging. The curvelet transform exhibits good reconstruction of the edge data as it incorporates a directional 
component to the conventional wavelet transform and therefore can be robustly used in analysis of higher 
dimensional signals (Bhosale, 2014). The curvelet transform thus proved more efficient than all other 
multiscale transforms including the wavelet transform in signal/image processing applications like signal 
filtering, enhancement, compression, denoising and watermarking (Kota and Reddy, 2011). 

This paper evolves a full-fledged analytical framework for the curvelet transform constructed through 
wavelet analysis, presenting a computational relationship between curvelets and wavelets. Employing this 
framework, a new signal denoising model is formulated. Simulations are performed with the radar signal data 
as a sample multispectral data and, in the end, performance factor analysis is carried out to compare the 
efficiency of curvelets over wavelets. 

2. PREREQUISITES 

2.1. Wavelet Transform 

The classical wavelet transform, also known as the continuous wavelet transform (CWT), is a decomposition 
of a function 𝑓𝑓(𝑥𝑥), with respect to a basic wavelet (𝑥𝑥) , given by the convolution of a function with a scaled 
and translated version of  𝛹𝛹(𝑥𝑥) as 

𝑊𝑊𝛹𝛹(𝑎𝑎,𝑏𝑏) [𝑓𝑓]   =  |𝑎𝑎|−
1
2 ∫ 𝑓𝑓(𝑥𝑥)𝛹𝛹∗  �𝑥𝑥−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑥𝑥                                                                             (1) 

=  < 𝑓𝑓, 1
�|𝑎𝑎|

 𝛹𝛹 �𝑥𝑥−𝑏𝑏
𝑎𝑎
� >     = < 𝑓𝑓,𝛹𝛹𝑎𝑎,𝑏𝑏 >= < 𝑓𝑓,𝑈𝑈(𝑎𝑎, 𝑏𝑏) > 

= 𝑊𝑊𝛹𝛹 𝑓𝑓(𝑎𝑎, 𝑏𝑏) , 

where<…, …> is the inner product. The range of integral is entire 𝑅𝑅𝑛𝑛. The functions 𝑓𝑓 and 𝜓𝜓 are square 
integrable functions and 𝜓𝜓 satisfies the admissibility condition 

                         𝐶𝐶𝛹𝛹 =  ∫ |𝛹𝛹� (𝑤𝑤)|2
|𝑤𝑤|  𝑑𝑑𝑑𝑑 < ∞                                                                                     (2) 

Here 𝑐𝑐𝛹𝛹 is called the admissibility constant. The superscript * denotes complex conjugation, ‘𝑎𝑎’ is the scale 
parameter,(𝑎𝑎 >  0), and ‘ 𝑏𝑏’ is the translation parameter. The term 1

�|𝑎𝑎|
  is the energy conservation term that 

keeps energy of the scaled mother wavelet equal to the energy of the original wavelet. The function 𝑓𝑓(𝑥𝑥) can 
be recovered by the reconstruction formula called the inverse wavelet transform, 

 𝑓𝑓(𝑥𝑥) =  1
𝐶𝐶𝛹𝛹
∬𝑊𝑊𝛹𝛹 𝑓𝑓(𝑎𝑎, 𝑏𝑏) 1

�|𝑎𝑎|
𝛹𝛹 �𝑥𝑥−𝑏𝑏

𝑎𝑎
� 𝑑𝑑𝑎𝑎𝑑𝑑𝑏𝑏

𝑎𝑎2
 ,                                                                         (3) 

where the admissibility constant 𝐶𝐶𝛹𝛹 > 0 . The spectral representation of CWT is obtained by making 
substitution for 𝑓𝑓(𝑥𝑥)usingthe inverse Fourier transform,  

𝑓𝑓(𝑥𝑥) =  1
2𝜋𝜋 ∫ exp(𝑖𝑖𝑑𝑑𝑥𝑥) 𝑓𝑓∞

−∞ (𝑑𝑑)𝑑𝑑𝑑𝑑, in (1) as 

9



Bharat Bhosale, Modelling Curvelet based Signal Processing Problems via Wavelet Analysis 

𝑊𝑊𝛹𝛹[𝑓𝑓(𝑥𝑥)](𝑎𝑎, 𝑏𝑏) =  1
2𝜋𝜋

|𝑎𝑎|1/2 ∫ 𝑓𝑓(𝑑𝑑)exp(𝑖𝑖𝑑𝑑𝑏𝑏)∞
−∞ 𝛹𝛹�(𝑎𝑎𝑑𝑑)𝑑𝑑𝑑𝑑                                             (4) 

In dyadic form, choosing scaling function as power of two, the discrete wavelet,𝜓𝜓𝑚𝑚.𝑛𝑛(𝑡𝑡) = 2−
𝑚𝑚
2𝜓𝜓(2−𝑚𝑚𝑡𝑡 −

𝑛𝑛), is used in multiresolution analysis that constitutes an orthonormal basis for 𝐿𝐿2 (𝑅𝑅) (Young, 1995). 

2.2    Curvelet transform 

 The curvelet transform is defined as  

𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑓𝑓) =  ∫ 𝑓𝑓(𝑥𝑥)𝑅𝑅2 𝛾𝛾𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥 = ∫ 𝑓𝑓(𝜉𝜉)𝑅𝑅2 𝛾𝛾�𝑗𝑗,𝑘𝑘,𝑙𝑙(𝜉𝜉)𝑑𝑑𝜉𝜉,                                                    (5) 

where 𝑓𝑓(𝜉𝜉) = 1
2𝜋𝜋 ∫ 𝑓𝑓(𝑥𝑥)𝑒𝑒−𝑖𝑖<𝑥𝑥 ,𝜉𝜉>

𝑅𝑅2 𝑑𝑑𝑥𝑥,                                                                                 (6) 

𝛾𝛾�𝑗𝑗,𝑘𝑘,𝑙𝑙(𝜉𝜉) =  𝑒𝑒−𝑖𝑖<𝑏𝑏𝑘𝑘
𝑗𝑗,𝑙𝑙,   𝜉𝜉>𝑈𝑈𝑗𝑗 �𝑅𝑅𝜃𝜃𝑗𝑗,𝑙𝑙 , 𝜉𝜉� =  𝑒𝑒−𝑖𝑖𝑏𝑏𝑘𝑘

𝑗𝑗,𝑙𝑙𝜉𝜉2−
3
4𝑗𝑗𝑊𝑊(2−𝑗𝑗𝑟𝑟)𝑉𝑉

�𝑤𝑤+𝜃𝜃𝑗𝑗,𝑙𝑙�

𝜃𝜃𝑗𝑗,𝑙𝑙
(7)   

where 𝑊𝑊(𝑟𝑟),𝑉𝑉(𝑟𝑟) are window functions satisfying the conditions given below.    

∫ 𝑊𝑊(𝑎𝑎𝑟𝑟)2 𝑑𝑑𝑎𝑎
𝑎𝑎

∞
0 = 1,∀𝑟𝑟 > 0,∫ 𝑉𝑉(𝑡𝑡)2𝑑𝑑𝑡𝑡1

−1 = 1                                                     

3. CURVELET TRANSFORM IN TERMS OF WAVELET TRANSFORM 

It is obtained by making substitutions for 𝑓𝑓(𝜉𝜉) and 𝛾𝛾�𝑗𝑗,𝑘𝑘,𝑙𝑙(𝜉𝜉) as given in (6) and (7) in (5), 

𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙𝑓𝑓(𝑥𝑥) =
1

2𝜋𝜋
� 𝑒𝑒−𝑖𝑖𝑥𝑥𝜉𝜉
𝑅𝑅2

𝑒𝑒𝑖𝑖𝑏𝑏𝑘𝑘
𝑗𝑗,𝑙𝑙𝑥𝑥𝑈𝑈𝑗𝑗 �𝑅𝑅𝜃𝜃𝑗𝑗,𝑙𝑙 , 𝑥𝑥� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 

= 1
2𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑥𝑥𝜉𝜉𝑅𝑅2 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑈𝑈𝑗𝑗 �𝑅𝑅𝜃𝜃𝑗𝑗,𝑙𝑙 , 𝑥𝑥� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥,where𝑠𝑠 =  𝑏𝑏𝑘𝑘

𝑗𝑗,𝑙𝑙 

=  1
�|𝑎𝑎|

1
2𝜋𝜋

|𝑎𝑎|1/2 ∫ 𝑒𝑒𝑖𝑖𝑤𝑤𝑥𝑥∞
−∞ 𝜓𝜓�(𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥,where 𝑑𝑑 = 𝑠𝑠 − 𝜉𝜉 

Using 𝜓𝜓�(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒 (𝑖𝑖𝜋𝜋𝑥𝑥^2 ) = 𝑒𝑒𝑥𝑥𝑒𝑒 [𝑖𝑖𝜋𝜋 �𝑥𝑥−𝑏𝑏
𝑎𝑎
�
2

] as the analyzing wavelet, 

𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙𝑓𝑓(𝑥𝑥) =
1

�|𝑎𝑎|
�

1
2𝜋𝜋

|𝑎𝑎|
1
2 � 𝑒𝑒𝑖𝑖𝑤𝑤𝑥𝑥

∞

−∞
𝑒𝑒𝑥𝑥𝑒𝑒 �𝑖𝑖𝜋𝜋 �

𝑥𝑥 − 𝑏𝑏
𝑎𝑎

�
2

�� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 

=
1

�|𝑎𝑎|
�

1
2𝜋𝜋

|𝑎𝑎|
1
2 � 𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �

2
�

∞

−∞
� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 

                     =  1
�|𝑎𝑎|

𝑊𝑊𝛹𝛹[𝑓𝑓(𝑥𝑥)](𝑎𝑎, 𝑏𝑏)                                                                                   (8) 

Thus, 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝑡𝑡 𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑓𝑓𝑇𝑇𝑟𝑟𝑇𝑇 =  1
�|𝑎𝑎|

( 𝑊𝑊𝑎𝑎𝐶𝐶𝑒𝑒𝐶𝐶𝑒𝑒𝑡𝑡𝑇𝑇𝑟𝑟𝑎𝑎𝑛𝑛𝑠𝑠𝑓𝑓𝑇𝑇𝑟𝑟𝑇𝑇), for a particular analyzing wavelet 𝜓𝜓 satisfying 

the admissibility condition (2), where the functions 𝑓𝑓 and 𝜓𝜓 are square integrable functions 

4. ANALYTICAL BEHAVIOR OF CURVELET TRANSFORM 

4.1. The test function space 𝑺𝑺 

An infinitely differentiable complex valued function 𝜙𝜙 on 𝑅𝑅𝑛𝑛 is said to belong to the test function space 
𝑆𝑆(𝑅𝑅𝑛𝑛) if  

𝛾𝛾𝑣𝑣,𝛽𝛽(𝜙𝜙) = sup
𝑥𝑥∈𝑅𝑅𝑛𝑛

�𝐷𝐷𝛽𝛽𝜙𝜙(𝑥𝑥)� < ∞,   for all 𝛽𝛽 ∈ 𝑁𝑁0𝑛𝑛. 

The dual space of 𝑆𝑆, is 𝑆𝑆′, the space of tempered distributions. 

4.2. Generalized Curvelet Transform 

The distributional curvelet transform of  𝑓𝑓(𝑥𝑥) ∈ 𝑆𝑆∗(𝑅𝑅𝑛𝑛) is defined by  

 𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙{𝑓𝑓(𝑥𝑥)}  = 𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏)=  〈𝑓𝑓(𝑥𝑥),  𝐾𝐾 (𝑥𝑥,𝑑𝑑, 𝑎𝑎, , 𝑏𝑏),                                                            (9)                                                     
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where𝐾𝐾 (𝑥𝑥,𝑑𝑑, 𝑎𝑎, , 𝑏𝑏) = 1
�|𝑎𝑎|

� 1
2𝜋𝜋

|𝑎𝑎|
1
2 ∫ 𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �

2
�∞

−∞ � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥, and 𝐾𝐾𝛼𝛼(𝑥𝑥, 𝑎𝑎, , 𝑏𝑏) ∈ 𝑆𝑆, 𝑓𝑓 ∈ 𝑆𝑆∗ 

4.3. Analyticity Theorem 

Let 𝑓𝑓(𝑥𝑥) ∈ 𝑆𝑆′  and its curvelet transform 𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏) be as defined in (9). Then, 𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎,𝑏𝑏) is analytic 
for some fixed 𝑎𝑎, 𝑏𝑏 and  𝑑𝑑 ∈ Ω, where 𝛺𝛺𝑓𝑓 = {𝑑𝑑: 𝜎𝜎1 < 𝑅𝑅𝑒𝑒 𝑑𝑑 < 𝜎𝜎2}, and  

𝐷𝐷𝑤𝑤𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏) = 𝜕𝜕
𝜕𝜕𝑤𝑤
𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏) = 〈𝑓𝑓(𝑥𝑥), 𝜕𝜕

𝜕𝜕𝑤𝑤
𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �

2
�〉.                                        (10) 

For, let 𝑑𝑑 be an arbitrary but fixed point inΩf. Choose the real positive numbers𝑒𝑒, 𝑞𝑞, 𝑟𝑟, such thatσ1 < 𝑒𝑒 <
𝑑𝑑 − 𝑟𝑟 < 𝑑𝑑 + 𝑟𝑟 < 𝑞𝑞 < σ2 . Also let ∆𝑑𝑑 be a complex increment such that 0 < |∆𝑑𝑑| < 𝑟𝑟. Now consider  

𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(w + ∆𝑑𝑑, 𝑎𝑎, 𝑏𝑏) − 𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏)
∆𝑒𝑒

− 〈𝑓𝑓(𝑥𝑥),
𝜕𝜕
𝜕𝜕𝑑𝑑

𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �
2
�〉 

= 〈𝑓𝑓(𝑥𝑥),    
1
∆𝑑𝑑

��𝑒𝑒𝑖𝑖�(𝑤𝑤+∆𝑤𝑤)𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �
2
�� − �𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �

2
��� −

𝜕𝜕
𝜕𝜕𝑑𝑑

�𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �
2
��〉 

                     = 〈𝑓𝑓(𝑥𝑥),   𝜓𝜓∆𝑤𝑤(𝑥𝑥)〉, 

where 

𝜓𝜓∆𝑤𝑤(𝑥𝑥) =
1
∆𝑑𝑑

��𝑒𝑒𝑖𝑖�(𝑤𝑤+∆𝑤𝑤)𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �
2
�� − �𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �

2
��� −

𝜕𝜕
𝜕𝜕𝑑𝑑

�𝑒𝑒𝑖𝑖�𝑤𝑤𝑥𝑥+π�𝑥𝑥−𝑏𝑏𝑎𝑎 �
2
�� 

Now, to show 𝜓𝜓∆𝑤𝑤(𝑥𝑥) ∈ 𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎,𝑏𝑏), it is enough to show that, as |∆𝑑𝑑| → 0,𝜓𝜓∆𝑤𝑤(𝑥𝑥) converges in 
𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏) to zero. Let 𝑐𝑐 denote a circle with centre at 𝑒𝑒 and radius𝑟𝑟1where 0 < 𝑟𝑟 < 𝑟𝑟1 < min (𝑑𝑑 − 𝑑𝑑). 
Interchanging differentiation on 𝑑𝑑 with differentiation on 𝑥𝑥and by using the Cauchy integral formula, 

(−𝐷𝐷𝑥𝑥𝑚𝑚)𝜓𝜓∆𝑤𝑤(𝑥𝑥) =
1
∆𝑑𝑑

���𝑇𝑇𝑘𝑘�
𝑚𝑚

𝑘𝑘=0

�𝐶𝐶𝑘𝑘(𝑖𝑖)𝑚𝑚−𝑗𝑗(2𝑥𝑥 − 2𝑏𝑏)𝑘𝑘−2𝑗𝑗𝑒𝑒(𝑘𝑘−𝑗𝑗)𝑝𝑝(𝑑𝑑 + ∆𝑑𝑑)𝑚𝑚−𝑘𝑘𝑒𝑒[(𝑘𝑘−𝑗𝑗)+𝑖𝑖𝑥𝑥](𝑤𝑤+∆𝑤𝑤)
𝑘𝑘

𝑗𝑗=0

−��𝑇𝑇𝑘𝑘�
𝑚𝑚

𝑘𝑘=0

�𝐶𝐶𝑘𝑘(𝑖𝑖)𝑚𝑚−𝑗𝑗(2𝑥𝑥 − 2𝑏𝑏)𝑘𝑘−2𝑗𝑗𝑒𝑒(𝑘𝑘−𝑗𝑗)𝑝𝑝(𝑑𝑑)𝑚𝑚−𝑘𝑘𝑒𝑒[(𝑘𝑘−𝑗𝑗)+𝑖𝑖𝑥𝑥]𝑤𝑤
𝑘𝑘

𝑗𝑗=0

−
𝜕𝜕
𝜕𝜕𝑒𝑒

���𝑇𝑇𝑘𝑘�
𝑚𝑚

𝑘𝑘=0

�𝐶𝐶𝑘𝑘(𝑖𝑖)𝑚𝑚−𝑗𝑗(2𝑥𝑥 − 2𝑏𝑏)𝑘𝑘−2𝑗𝑗𝑒𝑒(𝑘𝑘−𝑗𝑗)𝑝𝑝(𝑑𝑑)𝑚𝑚−𝑘𝑘𝑒𝑒[(𝑘𝑘−𝑗𝑗)+𝑖𝑖𝑥𝑥]𝑤𝑤
𝑘𝑘

𝑗𝑗=0

�� 

𝐷𝐷𝑥𝑥𝑚𝑚𝜓𝜓∆𝑤𝑤(𝑥𝑥)   = 𝑒𝑒−𝑠𝑠𝑠𝑠∆𝑝𝑝
2𝜋𝜋𝑖𝑖 ∫ �𝑝𝑝(−𝑧𝑧−𝑝𝑝)𝑎𝑎2𝑧𝑧𝑥𝑥−𝑧𝑧−𝑞𝑞−1−𝑝𝑝(𝑧𝑧−𝑞𝑞)𝑥𝑥𝑧𝑧−𝑞𝑞

(𝑧𝑧−𝑝𝑝−∆𝑝𝑝)(𝑧𝑧−𝑝𝑝)2
�𝑐𝑐  𝑑𝑑𝑑𝑑                                                 (11) 

Now for all 𝑑𝑑 ∈ 𝑐𝑐, 0 < 𝑥𝑥 < ∞, 𝑖𝑖𝑠𝑠𝑝𝑝𝐼𝐼 |𝐷𝐷𝑥𝑥𝑚𝑚𝜓𝜓∆𝑤𝑤(𝑥𝑥)| ≤ 𝑁𝑁, for some constant 𝑁𝑁,where 𝑁𝑁 is a constant independent 
of 𝑑𝑑 and 𝑥𝑥.  

Moreover, |𝑑𝑑 − 𝑑𝑑 − ∆𝑑𝑑| > 𝑟𝑟1 − 𝑟𝑟 > 0  and |𝑑𝑑 − 𝑑𝑑| = 𝑟𝑟1 

Consequently, sup|𝐷𝐷𝑥𝑥𝑚𝑚𝜓𝜓∆𝑤𝑤(𝑥𝑥)| = sup �∆𝑤𝑤
2𝜋𝜋𝑖𝑖 ∫ �𝑝𝑝(−𝑧𝑧−𝑞𝑞)𝑎𝑎2𝑧𝑧𝑥𝑥−𝑧𝑧−𝑞𝑞−1−𝑝𝑝(𝑧𝑧−𝑞𝑞)𝑥𝑥𝑧𝑧−𝑞𝑞

(𝑧𝑧−𝑤𝑤−∆𝑤𝑤)(𝑧𝑧−𝑤𝑤)2
�𝑐𝑐  𝑑𝑑𝑑𝑑� ≤ |∆𝑤𝑤|𝐶𝐶2

(𝑟𝑟1−𝑟𝑟)
  (12) 

Since the right hand side of equation (12) is independent of 𝑥𝑥 and converges to zero as|∆𝑑𝑑| → 0,  𝜓𝜓∆𝑤𝑤(𝑥𝑥) 
converges to𝑑𝑑. 

4.4. Inversion Theorem 

Let𝑓𝑓(𝑥𝑥) ∈ 𝑆𝑆(𝑅𝑅𝑛𝑛), 0 < 𝛼𝛼 ≤ 𝜋𝜋
2
 and 𝑠𝑠𝐶𝐶𝑒𝑒𝑒𝑒 𝑓𝑓 ⊂ 𝑆𝑆𝑑𝑑 ,  where 𝑆𝑆𝑑𝑑 = {𝑥𝑥: 𝑥𝑥𝑥𝑥𝑅𝑅𝑛𝑛 , |𝑥𝑥| ≤ 𝑑𝑑,𝑑𝑑 > 0}and let 

𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏)be the distributional Curvelet transform of 𝑓𝑓 as defined by 

{𝑓𝑓(𝑥𝑥)}  = 𝐶𝐶𝑗𝑗,𝑘𝑘,𝑙𝑙(𝑑𝑑, 𝑎𝑎, 𝑏𝑏) =  〈𝑓𝑓(𝑥𝑥),  𝐾𝐾 (𝑥𝑥,𝑑𝑑, 𝑎𝑎, , 𝑏𝑏)〉, where 

K (𝑥𝑥,𝑑𝑑, 𝑎𝑎, , 𝑏𝑏) = 1
�|𝑎𝑎|

� 1
2𝜋𝜋

|𝑎𝑎|
1
2 ∫ 𝑒𝑒𝑖𝑖[𝑤𝑤𝑥𝑥+π�

𝑥𝑥−𝑏𝑏
𝑎𝑎 �

2
]∞

−∞ � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥, 

11
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then for each ∅(𝑥𝑥) ∈ 𝑆𝑆(𝑅𝑅𝑛𝑛),  

lim
𝑝𝑝→∞

〈 1
2𝜋𝜋 ∫ 𝐾𝐾� (𝑥𝑥,𝑑𝑑, 𝑎𝑎, 𝑏𝑏)𝐹𝐹𝛼𝛼(𝑑𝑑)𝑑𝑑𝐶𝐶𝑃𝑃

−𝑃𝑃 ,  ∅(𝑥𝑥)〉 = 〈𝑓𝑓(𝑥𝑥),∅(𝑥𝑥)〉,                                             (13) 

where 𝐾𝐾� �(𝑥𝑥,𝑑𝑑, 𝑎𝑎, 𝑏𝑏)� = 𝑒𝑒−𝑖𝑖�𝑤𝑤𝑥𝑥+π�
𝑥𝑥−𝑏𝑏
𝑎𝑎 �

2
�. 

5. APPLICATIONS: RADAR/SATELLITE SIGNAL DENOISING 

A signal or an image is usually contaminated by various factors during acquisition or transmission causing 
noisy effects at the receiving end. These noisy effects decrease the performance of visual and computerized 
analysis. For both types of radar,continuous wave radar (that continuously transmits a high-frequency signal) 
and pulse radar (that transmits high power, high-frequency pulses toward the objects and waits for the echo 
of the transmitted signal before it transmits a new pulse), the quality of such transmitted signals is distorted in 
a noisy environment.The noise removal or the denoising process is aimed at removing the noise with the help 
of a matched filter without distorting the quality of processed signal or image. The process, either based on 
wavelet or curvelet as matched filter, consists of three major steps: decomposition of the transmitted signal, 
thresholding to demise noisy elements and reconstruction of the processed signal. 

The mathematical formulation of the signal 𝑥𝑥(𝑡𝑡) contains two components and is expressed as𝑥𝑥(𝑡𝑡)  =
 𝑠𝑠𝑖𝑖(𝑡𝑡)  +  𝑛𝑛𝑖𝑖(𝑡𝑡), where  𝑠𝑠𝑖𝑖(𝑡𝑡) represent signal of interest (e.g. object) and 𝑛𝑛𝑖𝑖(𝑡𝑡) represents noise factor. The 
spectrum of the transmitted signal 𝑠𝑠𝑖𝑖(𝑡𝑡)is 𝐹𝐹𝑖𝑖𝑖𝑖(𝜔𝜔) = ∫ 𝑠𝑠𝑖𝑖

∞
−∞ (𝑡𝑡)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑡𝑡, the Fourier transform of 𝑠𝑠𝑖𝑖(𝑡𝑡) and the 

noise 𝑛𝑛𝑖𝑖(𝑡𝑡) is generally additive white Gaussian noise whose power spectrum is N/2(Saiful et al., 2013). 

The decomposition of the signal with matched filter, say, ℎ(𝑡𝑡) (in this case wavelet or curvelet based) yields 
the output, 𝑦𝑦(𝑡𝑡)  =   𝑠𝑠0(𝑡𝑡)  +   𝑛𝑛0(𝑡𝑡) so as to generate a peak ratio of 𝑠𝑠0(𝑡𝑡) and 𝑛𝑛0(𝑡𝑡) in the sampling values at 
time T. Note that the resulted output, 𝑦𝑦(𝑡𝑡), also contains two components that represent the transmitted signal 
and the noise respectively, where the component, so(t) is𝑠𝑠𝑜𝑜(𝑡𝑡) = ∫ [𝐻𝐻(𝜔𝜔)𝐹𝐹𝑖𝑖(𝜔𝜔)]∞

−∞ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝜔𝜔 and the noise 
component,𝑛𝑛0(𝑡𝑡), is a Gaussian distribution.The matched filter maximizes the peak signal to noise ratio 
(PSNR), the ratio of the power of so(t), and the power of no(t) according to the Schwarz inequality. 

Decomposition process begins with application of a wavelet filter (with low-pass filter ℎ, high-pass filter𝑔𝑔, 
and down sampling by a factor of 2 at each stage of the filter bank), as a result of which, the given signal, 
𝑥𝑥(𝑡𝑡) , is decomposed into low and high frequency components, termed as approximation coefficients and 
detail coefficients respectively. The low pass and high filters are given by 
ℎ(𝑛𝑛) = 2

−1
2 〈𝜑𝜑(𝑡𝑡),𝜑𝜑(2𝑡𝑡 − 1)〉, 𝑔𝑔(𝑛𝑛) = 2

−1
2 〈𝜓𝜓(𝑡𝑡),𝜑𝜑(2𝑡𝑡 − 1)〉 = (−1)𝑛𝑛ℎ(1 − 𝑛𝑛)               (14) 

As an intermediate step, wavelet coefficients are converted into curvelet coefficient by using (8). 

Next, a thresholding technique is applied to remove the noise component from the decomposed signal data 
that appears in curvelet coefficient form. Thresholding is a simple operation and is performed by selecting 
the coefficients below a certain threshold and setting them to zero as  

𝑐𝑐𝜆𝜆 = �𝑐𝑐𝜆𝜆, |𝑐𝑐𝜆𝜆| ≥ 𝑡𝑡𝜆𝜆
0, |𝑐𝑐𝜆𝜆| < 𝑡𝑡𝜆𝜆

    ,  

where𝑐𝑐𝑘𝑘are the curvelet coefficients, 𝑡𝑡𝜆𝜆is the threshold, λ being the index. The threshold value is adjusted 
using 𝑡𝑡𝜆𝜆 = 𝜎𝜎� 2𝐶𝐶𝑇𝑇𝑔𝑔𝐿𝐿, σ is a noise variance computed using 𝜎𝜎 = 𝑀𝑀𝑒𝑒𝑑𝑑𝑖𝑖𝑎𝑎𝑛𝑛(𝑑𝑑_(𝐿𝐿−1,𝑘𝑘)))

0.6745
, where𝐿𝐿 = 𝑁𝑁2, the size of 

the signal (Yaser and Mahdi, 2011).The thresholding process leads to shrinking the noisy coefficients in the 
threshold interval [−𝑡𝑡𝜆𝜆, 𝑡𝑡𝜆𝜆] and retaining the detail coefficients. 

Finally, the signal (𝑡𝑡) , in turn, is reconstructed as 

𝑥𝑥(𝑡𝑡) =  1
�|𝑘𝑘|

∑ �∑ 𝐷𝐷𝑚𝑚(𝑘𝑘)𝜓𝜓𝑚𝑚,𝑘𝑘(𝑡𝑡)∞
𝑘𝑘=−∞ + ∑ 𝐴𝐴𝑙𝑙(𝑘𝑘)𝜑𝜑𝑚𝑚,𝑘𝑘(𝑡𝑡)∞

𝑘𝑘=−∞ �𝐿𝐿
𝑚𝑚=1 ,                                       (15) 

where ,𝜓𝜓𝑚𝑚,𝑘𝑘(𝑡𝑡)is the discrete analysing wavelet,  𝜑𝜑𝑚𝑚,𝑘𝑘(𝑡𝑡)is the discrete scaling, 𝐷𝐷𝑚𝑚(𝑘𝑘)is thedetailed signal at 
scale 2𝑚𝑚, and 𝐴𝐴𝑙𝑙(𝑘𝑘)is the approximated signal at scale 2𝑙𝑙. 𝐷𝐷𝑚𝑚(𝑘𝑘)and𝐴𝐴𝑙𝑙(𝑘𝑘)are obtained by applying the 
scaling and wavelet filters (Mallat, 1999). 

To facilitate comparison in terms of efficiency of curvelets over wavelets, performance factor analysis is 
carried out by using the statistical measures, such as, peak signal to noise ratio (PSNR) and root mean square 
error (RMSE), computed as 
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𝑃𝑃𝑆𝑆𝑁𝑁𝑅𝑅 = 10 log10 �
∑ 𝑥𝑥2(𝑖𝑖)𝑁𝑁
𝑖𝑖=1

∑ [𝑥𝑥(𝑖𝑖)−𝑥𝑥�(𝑖𝑖)]2𝑁𝑁
𝑖𝑖=1

�, 𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅 = 1
𝑁𝑁
�∑ [𝑥𝑥(𝑖𝑖) − 𝑥𝑥�(𝑖𝑖)]2𝑁𝑁

𝑖𝑖=1 (16)                                

where𝑥𝑥(𝑖𝑖)is the original source signal, 𝑥𝑥�(𝑖𝑖)is the separated signal, 𝑖𝑖is the sample index and N is the number 
of samples of the signal.A better performance of the matched filter is shown by a higher the value of PSNR 
with minimum value of RMSE.To demonstrate the performance of the proposed model, multispectral image 
sample data is considered. 

Figure 1. Some examples of ship chips. (a,h) are the cropped ship chips from the Gaofen-3 images with FS1 
imaging mode. (b,c,e,j) are the cropped ship chips from the Sentinel-1 images with Interferometric Wide 
(IW)  imaging mode. (d,f,g,i) are the cropped ship chips from the Gaofen-3 images with Ultrafine Strip 

(UFS) imaging mode (Wang, et al., 2019) 

In a multispectral dataset, the band information is reported as the centre wavelength value that represents the 
centre point value of the wavelengths. Simulations are performed on noisy mixed sample signal data on 
Matlab® R 7.9 on a core i7 2.2 GHz PC using the USFFT software package.  

The results (PSNR in dB) along with RMSE are presented below: 

Table 1. PSNR in dB 

Image  Signal data Wavelet  
thresholding 

Curveletthresholding RMSE 

Sample I  20.01(m=0, 
σ2=0.01) 

24.89 26.15 0.1214 

Sample II  21.09 (m=0, 
σ2=0.01) 

26.89 27.14 0.1234 

Sample III  19.77(m=0, 
σ2=0.01) 

27.70 29.15 0.0764 

6. DISCUSSION AND CONCLUSION 

In this work, the curvelet transform has been presented as an extension of the wavelet transform by exploiting 
the relationship between them, and a full-fledged analytical framework has been established in new settings. 
In order to avoid computational complexity, instead of computing curvelet coefficients, the wavelet 
coefficients are computed first and then curvelet coefficients are obtained using the relationship between 
them. Thus, the curvelet expressed in terms of the wavelet has been employed more conveniently in the 
proposed signal denoising model without loss of signal edge information. As an illustration, the performance 
factor analysis is conducted with the sample data.  

The results show that besides gaining on the computational complexity, the proposed curvelet based model 
has better performance in terms of increased PSNR with minimized RMSE than the one based on wavelets. 
The proposed model can be applied to both pulse signal as well as the image, since the image can be 
represented as two-dimensional signal. 
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