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As an independent measure of performance for the two machine learning algorithms, we used the correlation 

between the true probability p(x,y) and the inferred probability from machine learning. The correlation 

between the two probabilities was calculated using quadratic regression, since Dekker and Rowley (2015) 

suggests a nonlinear relationship between the two probabilities. Correlations were compared using paired t-

tests. As an ‘internal’ measure of model quality, we also calculated the area under the Receiver Operating 

Characteristic curve, or AUC value (Wisz et al., 2008), using independent test data (i.e. new sets of randomly 

generated ‘presence’ and ‘background’ points). The median AUC value over 11 sets of test data was used. 

In a supplementary experiment, we follow the suggestion of Kramer-Schadt, et al. (2013) to undo bias by 

randomly deleting excess ‘presence’ datapoints within the focus area. This restores an unbiased sampling 

probability, but reduces the sample size. It only makes sense to do so for zones A and B with partial bias. 

  
(a) Zone A, no sampling bias. (b) Zone A, partial sampling bias. 

  
(c) Zone A, full sampling bias. (d) Reconstructed distribution for zone A (Maxent). 

  
(e) Zone B, full bias. (f) Zone C, full bias. 

Figure 3. Artificial species distributions A, B, and C, showing three sampling bias options for zone A (all 

three options were also applied to zones B and C, but are omitted here for space reasons). The colour scale 

shows probability p(x,y), with white = 0 and red = 1. Black circles show ‘presence’ datapoints, which are 

generated randomly with probability proportional to p(x,y), with possible sampling bias. 
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3. EXPERIMENT 1 – RESULTS AND DISCUSSION 

Figure 4 shows the results of the first experiment, averaged over 15 runs. Assessing statistical significance at 

the 1% level, in the unbiased case, Maxent outperforms Random Forests only for zone A (a correlation of 

0.94 vs 0.88). In the biased case, Maxent outperforms Random Forests for six cases: 

 zone A with partial bias (0.92 vs 0.85 for background boost, 0.91 vs 0.84 for no boost); 

 zone A with full bias, which is not surprisingly the worst case (0.61 vs 0.56 for background boost, 

0.50 vs 0.47 for no boost); and 

 zone B with partial bias (0.91 vs 0.89 for background boost, 0.88 vs 0.86 for no boost). 

Random Forests very slightly outperform Maxent for zone C with full bias and no background boost (0.88 vs 

0.87) although, with a statistical significance barely meeting the 1% criterion (actually, 0.7%), this is 

probably a chance effect. 

Because of the simplicity of the synthetic distribution p(x,y) = α(x,y) β(x,y) γ(x,y) we have used, it is possible 

that our results are slightly biased in favour of Maxent, which may infer simpler models than Random 

Forests. However, this property of Maxent is often desirable for real-world data (Dekker and Rowley, 2015). 

The use of background boost has a positive effect for all cases of bias except zone A with partial bias: 

 zone A with full bias (0.56 vs 0.47 for RF, 0.61 vs 0.50 for Maxent); 

 zone B with full bias (0.79 vs 0.76 for RF, 0.82 vs 0.76 for Maxent); 

 zone B with partial bias (0.89 vs 0.86 for RF, 0.91 vs 0.88 for Maxent); 

 zone C with full bias (0.90 vs 0.88 for RF, 0.91 vs 0.87 for Maxent); and 

 zone C with partial bias only for Maxent (0.91 vs 0.87). 

The stronger effect of background boost with full bias is consistent with Phillips et al. (2009) and Syfert et al. 

(2013). However, the benefit of background boost even for zone C, where there is little real bias, suggests 

that there is also a benefit in having more background points closer to the ‘presence’ points even when there 

is no actual sampling bias (thus allowing machine learning to better discriminate presence vs absence). 

 

Figure 4. Results of the 1
st
 experiment. Here ‘RF’ refers to Random Forests, and ‘+’ to the use of a 

background boost. Error bars show minimum and maximum results over 15 runs. 

As Figure 5 shows, there was essentially no relationship between the commonly used AUC score and the 

correlation used as a measure of performance. This implies that, where sampling bias occurs, AUC scores are 

a poor guide to algorithm performance. Because AUC scores are an ‘internal’ measure (measuring the fit to 

the sample data), they can be very high even when true performance (as measured by the correlation) is low. 

For the supplementary experiment (removing bias by deleting excess ‘presence’ datapoints), which we 

conducted only with Maxent and partial bias, we obtained a correlation (between true and inferred 

probabilities) of 0.94 for zone A. At the 1% level, this is a statistically significant improvement on Maxent 

alone (0.91) or Maxent with background boost (0.92). However, for zone B, we obtained a correlation of only 

0.78, which is significantly worse than Maxent alone (0.88) or Maxent with background boost (0.91). 
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Figure 5. Relationship between AUC and Correlation as Measures of Performance, for 3 runs only. 

4. EXPERIMENT 2 – METHODS 

Typically, biologists have considerable implicit knowledge about p(x, y) which is not provided as input to the 

modelling process. Such knowledge can be used to treat certain parts of the study area as a priori impossible 

(Thuiller et al. 2004). Is there a benefit in incorporating such knowledge? For the case of Maxent only, our 

second experiment explores the effect of knowledge about one of the components α(x,y) or β(x,y). With that 

knowledge, specific regions (shown in grey in Figure 6) can be ruled out as potential habitat for zumbats, and 

effectively excluded from the study area. After running the Maxent algorithm, we can then set p(x,y) = 0 for 

the entire excluded area. The 3 cases in Figure 6 vary significantly in terms of how much area is excluded.  

This exclusion process has the advantage of concentrating background datapoints on areas where the value of 

p(x,y) is unknown, but it may also deprive the Maxent algorithm of information about the importance of the 

climate variables defining the excluded zone (this is especially problematic for a large excluded zone). 

Our second experiment repeats the first experiment (for the case of Maxent only), using the same sets of 

‘presence’ and ‘background’ datapoints, but compares the effect of excluding from the study area the areas 

shown in grey in Figure 6. That is, the results from the first experiment are taken as a Base case, and 15 new 

experiments were run for the reduced areas (with new ‘presence’ and ‘background’ points each time). 

   

(a) Zone A (b) Zone B (c) Zone C 

Figure 6. Excluded areas for the second experiment. 

5. EXPERIMENT 2 – RESULTS AND DISCUSSION 

Figure 7 shows the results of the second experiment, averaged over 15 runs. In the unbiased case, exclusion 

is beneficial (at the 1% statistical significance level) for the two cases with the more substantial exclusion: 

zone B (0.94 vs 0.89) and zone C (0.95 vs 0.88). In the biased case, exclusion is beneficial for: 

 zone B with partial bias (0.91 vs 0.88); and 

 zone C with partial or full bias (0.93 vs 0.87 in both cases). 
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Figure 8. Location data for the thorny devil, 

Moloch horridus, in part of South Australia, with 

sealed and unsealed roads marked in red. Of these 

locations, 79% are at most 1 km from a road. 

 

Where background boost is used, exclusion is beneficial for zone C with partial or full bias (0.93 vs 0.91 in 

both cases) but has a negative effect for zone B with full bias (0.77 vs 0.82). The latter effect is highly 

significant (0.00025%). The use of exclusion is therefore obviously no panacea. 

Conversely, where the grey areas in Figure 6 are excluded, background boost is beneficial for all cases except 

zone C with full bias, where it has no effect. 

Combining the results of the two experiments, the safe option in cases of bias appears to be Maxent with 

background boost (pink bars in Figure 7), while benefits for excluding parts of the study area are mixed. 

 

Figure 7. Results of the 2
nd

 experiment. Here ‘Base’ refers to the Maxent data in Figure 4, and ‘Reduced’ to 

the effect of excluding the grey areas in Figure 6. As before, ‘+’ refers to the use of a background boost. 

Error bars show minima and maxima over 15 runs. 

6. CONCLUSIONS AND FURTHER WORK 

In cases of sampling bias, our results show a benefit for using the Maxent algorithm with a boost of more 

‘background’ datapoints within what we have called the focus area. But what is the focus area? Our 

experiments have taken it to be a simple circle, but with real data, the focus area can be difficult to infer, 

since it may correlate with climatic variables. For example, the presence of vegetation like Anodopetalum 

biglandulosum (Figure 1) may correlate with high rainfall; mountainous terrain may correlate with low 

temperatures; and the absence of roads may 

correlate with a desert climate. 

In some cases, the field biologists will be able to 

explicitly describe their sampling strategy, while in 

others the strategy may be obvious. For example, 

Figure 8 shows location data for the thorny devil, 

Moloch horridus, in part of South Australia (ALA, 

2016), compared to sealed and unsealed roads in a 

state database (SA Government, 2016). Of the 

locations, 79% are 1 km or less from a road, while 

others appear to be located on tracks not in the 

database. For this set of location data, the focus area 

can be taken to consist of pixels on, or adjacent to, 

roads. 

In other cases, a plausible focus area can be 

identified from occurrence records for other species 

that have been observed in the same general area 

using similar methods, as suggested by Phillips et 

al. (2009). 

Kramer-Schadt, et al. (2013) suggest that spatial 

filtering (discarding excess ‘presence’ datapoints) is 

preferable to the use of background boost, but this 
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presupposes that ‘presence’ datapoints do cover the true species range, being merely denser within the focus 

area (i.e. what we have called partial bias), and that there are sufficient ‘presence’ datapoints that the excess 

can be discarded. Our results (in the supplementary experiment) do not support their suggestion; spatial 

filtering gives a slight improvement (0.94 vs 0.92) for zone A, but a considerable degradation (0.78 vs 0.91) 

for zone B. However, further work would be needed to explore this in detail. 

In future work, we intend to explore these options with a greater degree of realism by using more biologically 

plausible distributions for the fictional species, and by using a more realistic model of a field biologist 

collecting observations. Specifically, we intend to use an explicit agent-based model of a field biologist 

traversing a road network like the one in Figure 8 while collecting observations. 
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