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Abstract: The ability of project managers to generate accurate budget predictions for capital 

investments is critical for successful project completion and the management of the Australian 

Department of Defence budget.  Accordingly, this paper discusses non-linear regression models to 

analyse planned time-phasing of expenditures for projects in an Australian Defence capital investment 

program. Earlier research on time-phasing primarily focuses on the theoretical foundation for applying 

the cumulative distribution function, usually of functional forms such as Rayleigh and Weibull curves, 

to model the distribution of project expenditures.  Previous approaches have also relied on elementary 

regression techniques to estimate the parameters of the curves.  However, these analyses have generally 

ignored the longitudinal, repeated measures nature of the data for each project, potentially 

compromising results because the data within projects is correlated. Here, a non-linear mixed-effects 

model is used to estimate the parameters of the time-phasing distributions for a large number of major 

capital investment projects. Unlike ordinary linear or non-linear regression, this has the advantage of 

accounting for within project correlation and unequal variance.  The model can be thought of as a 

hierarchical model involving both fixed-effects associated with the population of projects and random-

effects accounting for unexplained inter- and intra-project variability.  The fixed part of the model 

incorporates military domain effects and project epochs, and random effects account for 

heteroscedasticity and correlations between the repeated measures.  Analysis reveals significant 

differences between project’s time-phasing due to their domain and epoch.  The model may be used by 

project and portfolio planners to estimate required spending plans against project schedule and total 

planned expenditure; it therefore provides a tool to measure project and financial risk. 
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1. INTRODUCTION 

A significant proportion of Department of Defence (Defence) expenditure is for the Approved Major 

Capital Investment Program (AMCIP). In recent years Defence has budgeted approximately $4500m 

annually for expenditure on major projects (Department of Defence, 2015). Expenditure will increase 

significantly in the future as Defence implements an expanded capability portfolio (Department of 

Defence, 2016).  

Modern systems engineering literature suggests that greater efforts in planning and designing systems 

help reduce rework and cost over-runs later in programs (see e.g. Blanchard, 2008).  Less effort early 

on in projects can lead to poor understanding of user requirements, scope creep and unrealistic 

estimates of cost and time to completion.  Other published research shows that funding provided in the 

wrong fiscal year of development may result in productivity inefficiencies, schedule slips, and 

increased program costs (Unger et.al., 2004). For these reasons, a model for the spread of funding 

across a project’s life would aid analysts and managers.  Furthermore, in response to the First 

Principles Review (Peever et al., 2015), Defence has sought to improve its capability in parametric 

modelling of projects’ costs, schedule and risk.  Peever et al. also recommends Defence cease 

expenditure slippage and portfolio overprogramming (planning for expenditure slippage) as 

management tools used on project and portfolio expenditure plans.  Defence has a long history of using 

overprogramming and it will require improved project planning to avoid expenditure variations.  The 

research here provides a quantitative methodology for project planning in Defence. It makes a direct 

contribution to Defence’s analytic capability by developing a method of parameterising project planned 

expenditures and relating the parameters to project characteristics. 

An examination of year-on-year expenditure patterns in AMCIP projects was undertaken by Weir 

(2017).  That analysis employed a log-normal linear mixed model to regress actual expenditure against 

planned expenditure where (project) time was a covariant.  Another approach to model project 

expenditure, time-phasing, has been investigated by several other authors, although in other contexts; 

see e.g. Burgess (2006) and Brown et al. (2015).  Time-phased modelling of expenditure plans provides 

a statistically robust method of analysis, especially for project planning.  This applies the cumulative 

distribution function, commonly referred to as an S-curve, to project spend spreads.  Some earlier 

studies have made use of the single parameter Rayleigh distribution (see e.g. Abernethy, 1984), but 

later studies, including those of Burgess and Brown et al. have used the multi-parameter Weibull 

distribution because it enables more flexibility and precision.  It is noted that these analyses assume 

independence of observations and do not account for correlated data.  These assumptions may not be 

valid because the expenditures come from repeated observations on the same project. 

This paper models project expenditures for AMCIP projects in the period 1996/97 to 2012/13 using a 

nonlinear mixed effects model (NLMM) to describe the trajectory of costs in each project. Planned and 

actual expenditure in each AMCIP project in each year of its duration has been recorded by Defence 

for financial planning and reporting and provides the data set for analysis. The project financial data is 

accompanied by, inter alia, organisational data that identifies the domain of the investment, such as 

land, sea or air. Because variations from expenditure plans have the potential to create cash flow 

problems in Defence, developing a model that explains the time-phasing of expenditure will improve 

project planning and portfolio financial management. From a Defence portfolio management 

perspective, it is also desirable to understand if families of projects behave differently from each other 

because the differences may be due to varying management practices across project domains or to the 

nature of domains. In the following sections of this paper we describe the project expenditure plans. 

We give a brief overview of the data and previous work.  We then estimate the Weibull parameters for 

each project and relate the parameters, where possible, to characteristics of projects. 

2. DATA FORM AND SCOPE 

The data set analysed here consists of 196 projects with 918 observations of planned expenditure. Each 

project has a minimum of four observations (plus the origin, making a minimum of five observations 

for modelling).  Any missing data is considered missing at random because the data is missing both on 

the covariate of time and (the outcome) expenditure.  Expenditures have been adjusted for inflation. 

Each project belongs to one of five domains – Air (AIR), Joint (JNT), Land (LND), Other (OTH) and 

Sea (SEA) and to one of three epochs – projects commenced prior to 1997 (Epoch_1), projects 

commenced between 1997 and 2005 (Epoch0) and projects commenced after 2005 (Epoch1). 
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Observations have been taken only from years one to 10 of a project’s duration1.  A histogram of the 

distribution of project lengths is at Figure 1(A). 

A B 

 
 

Figure 1.  (A) Distribution of projects by their length (B) planned cumulative percent expenditure 

versus percent schedule for all projects with marginal distribution of each variable 

Each project’s planned expenditures are converted to a percent cumulative expenditure by percent 

schedule. Profile plots for cumulative percent expenditure versus percent schedule for all projects are 

shown in Figure 1(B). There is clearly considerable variation of expenditure profiles between projects.  

A B 

  

Figure 2. (A) Plot for the planned cumulative % expenditure versus % schedule for  projects in 

each Domain (B) Percent expenditures at 50% schedule by project start year and Domain 

The range of percentage expenditures at the development midpoint is substantial.  A mean of 58% of 

total expenditures occurs at the 50% development point.  There appears little difference in profiles even 

when domain is considered at Figure 2(A). After aggregating we find that mean expenditure at the 50% 

development point by domain is as follows: AIR 59%, JNT 61%, LND 47%, OTH 63% and SEA 61%.  

So overall spending considerably leads development in all but one of the domains.  It is worth noting 

that the percentage spend reflected in these projects is considerably more than that of comparable 

studies at Brown et al. (2015) but similar to that in Burgess (2006). Figure 2(B) shows that 

expenditures by the development midpoint have generally decreased over time.  This may reflect an 

increasingly conservative risk based acquisition process fostered by successive reviews.  It is noted that 

“OTH” projects have been phased out in recent years, and replaced by “JNT” projects. 

3. PARAMETERISING PROJECT DATA 

Assuming a nonlinear evolution, and denoting by t ≥ 0 the time, the accumulation of project 

expenditures can be modelled by the following Weibull Cumulative Distribution Function (CDF)2 

                                                           
1 Some projects extend beyond 10 years in their execution, but the original plan is constrained to 10 

years in AMCIP 
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𝐹(𝑡) = 1 − exp⁡[−(
𝑡

𝛽
)𝛼] (1) 

where α > 0 and β > 0 represent respectively the shape parameter and the scale parameter. The scale 

parameter β determines the steepness of the CDF and the shape parameter α allows proportions to 

evolve at other than linear rates.  

The plot at Figure 1(B) gives an overall view of the structure of the data.  We constrain the analysis to 

the Weibull distribution as some preliminary background analysis suggests it provides better a fit than 

complementary distributions of Beta and Raleigh.  We commence by estimating parameters for a 

simple model of the data that gives the mean growth assuming independent observations. 

The parameters may be estimated by fitting 

𝑦𝑖𝑗 =
(1 − exp [− (

𝑡𝑗
𝛽
)
𝛼

])

(1 − exp [− (
1
𝛽
)
𝛼

])

 (2) 

to the data where 𝑦𝑖𝑗 is cumulative expenditure in project i at time 𝑡𝑗.  The denominator in (2) is 

required to account for the infinite tail of the Weibull density. 

We first use use nonlinear least squares estimation to calculate the parameters of (2) assuming 

uncorrelated errors.  Box plots of the residuals for each project show some projects having all residuals 

larger than others, suggesting that there are project-specific components affecting the response. This 

assessment is supported by a plot of the confidence intervals for the parameters. This variability may be 

modeled by random effects on the parameters of the Weibull distribution. Reducing correlations for 

planned expenditure over time suggests that an appropriate model may require an autoregressive 

variance structure. Plots of the shape and scale parameters show some weak evidence for a difference 

in each parameter across Domains and Epoch.  So Domain and Epoch may be useful as a covariant of 

the shape and scale parameters in (2).  

A nonlinear least squares (NLLS) fit of (2) on the data using Epoch as a covariant of the beta parameter 

is displayed at Figure 3.  Although the plots of the modelled fits appear to fit the data well, an analysis 

 

Figure 3.  Loess and modelled nonlinear least squares fits to the data with marginal distributions of the 

variables 

of the residuals does not support the assumptions of a NLLS model.  Again, it is expected that 

incorporating random effects and a variance structure will produce a better fit to the data. 

Previous S-curve research, has hypothesised that project length, project total expenditure and domain 

are important predictor variables for the Weibull parameters (see eg. Brown et al., 2002; Burgess, 

2006). Changes in Defence capability management (see e.g. Kinnaird et.al., 2003) mean that project 

                                                                                                                                                                      
2 Often referred simply as distribution 
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epoch may also be an important factor.  Preliminary modelling investigations showed that only domain 

and epoch were applicable predictor variables for this study. 

4. NONLINEAR MIXED EFFECTS MODELS 

Mixed models differ from more familiar linear models (e.g. linear regression, ANOVA) through their 

ability to cope with correlated data and unequal variances. Mixed models are very useful to analyze 

data with a hierarchical structure, where measures from distinct units or subjects are independent and 

those from within subjects are correlated. Essentially, mixed models segment data into two parts: fixed 

effects and random effects. The expected values of the observations are described by the fixed effects, 

and the variance and covariance of the observations are described by the random effects. In particular, 

mixed models are appropriate to analyze repeated measures in longitudinal studies where each subject 

of the study is measured multiple times. Mixed effects models give correct estimates of treatment and 

other fixed effects in the presence of the correlated errors that arise from a data hierarchy. 

NLMM extend linear regression models in two ways – firstly to incorporate a nonlinear response to a 

predictor variable and secondly to allow the predictor variable to be modeled as mixed effects linear 

model.  Nonlinear regression methods are suited for analysing data for which there is an empirically or 

theoretically established functional relationship between response and predictor.  NLMM for repeated 

measures can be thought of as a hierarchical model involving both fixed-effects associated with the 

population parameters and random-effects accounting for unexplained inter- and intra-individual 

variability.  At the first-stage model, the intra-individual (residual) variability describing the difference 

between the individual predicted values and the observations is modelled as 

iijijiij NjNiefy ,...1,,...,1,),(    (4) 

where ijy is the j-th response for the i-th unit, i  is a subject specific parameter vector and ij is a 

vector of covariates.  The error terms ije are assumed independently and identically distributed normal 

random variables with mean zero and variance 
2 . 

At the second-stage of the hierarchy, the model relates the parameters of the different individuals using 

a linear mixed model, 

iijiji bZX    (5) 

where ijX  and ijZ are design matrices for the fixed-effects vector   and random-effects vector ib , 

respectively. The inter-individual variability is modelled by the random-effects vector ib  which 

consists of p zero-mean variables assumed to be independent and identically distributed (traditionally 

thought to be the multivariate normal distribution) with variance-covariance matrix G. The residual 

error terms ije  and the random effects ib  are assumed normally distributed and independent for all i 

and j. 

5. MODEL FITTING 

Here we consider a NLMM model that includes random effects to account for possible positive within-

subjects correlations.  The NLMM, with random intercepts, may be expressed as in the form of (4) via 

the function described at (2), and 

llkkiikl DomEpochu    (6) 

llkkiikl DomEpoch    (7) 

for the shape and scale parameters respectively, where  and   are the mean values of shape and 

scale parameters respectively and ),0(~ 2


bi Nu and ),0(~ 2


 bi N are independent random 

variables corresponding to the random effects of project i. Epochk and Doml are respectively indicator 

variables for the Epoch and Domain of each project with corresponding parameters lklk  ,,, where 
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k and l range over the levels of Epoch and Domain respectively . The errors ije  in (4) are independent 

and follow ),0( iRN  distributions, where, as suggested by the preliminary analysis, each iR has 

different variances for each time period of project i and incorporates an autoregressive covariance 

structure over time to model the correlation of expenditures within project i.  It is expected that cor( iu ,

i ) is zero. The model was fitted via maximum likelihood (with restricted maximum likelihood for the 

within-subjects covariance parameters) using methods implemented in the nlme library (Pinheiro et.al., 

2013) in R. 

A summary of the model is given at Table 1.  The fixed effects are significant. The estimated 

covariances (not reported here) between the fixed effects are very small indicating that the parameters 

are all identifiable.  Some parameter intervals for the variance function (different variance per time 

period) include unity, but there is sufficient evidence (L-Ratio 61.0730 on 8 Dof, p-value < 0.0001) to 

reject the assumption of homoscedasticity.  Autocorrelation in the covariance structure is supported by 

a likelihood ratio test (L-Ratio 64.5478 on 1 Dof, p-value < 0.0001). Other likelihood tests found no 

improvement in fit assuming different variances per Epoch or Domain instead of time (year).  

Table 1. Summary of the final model 

 

Fixed Effects 

 

 
.intercept .Epoch_1 .Epoch0 .JNT .LND .OTH .SEA 

Value 1.589 0.0723 -0.238 -0.137 0.186 -0.144 0.009 

Std.Error 0.0868 0.0803 0.0934 0.0786 0.098 0.1217 0.078 

p-value <.0001 0.012 0.0743 0.0257 0.015 0.9404 0.606 

 .intercept .Epoch_1 .Epoch0 .JNT .LND .OTH .SEA 

Value 0.71 0.0322 -0.048 0.016 0.076 0.075 0.011 

Std.Error 0.02 0.0209 0.0252 0.022 0.025 0.035 0.021 

p-value <.0001 0.0003 0.0344 0.701 0.006 0.041 0.589 

 

Random Effects     

 .intercept .intercept Residual  

StdDev 0.38012 0.09581 0.04005  

 

Variance Function Different 

standard deviations per stratum 

    

Year 1 2 3 4 5 6 7 8 9 

Var Par 1 2.1451 1.7102 0.9968 0.893 0.8828 0.6049 0.5661 0.7418 

Autoregressive Correlation Parameter:  0.5686   

Model: AIC: -2047.323 BIC: -1922.374 LogLik: 1049.661  

The variance parameter estimates of a model including correlation between the random effects iu and 

i  indicate that the correlation is insignificant (L-Ratio 1.6853 on 1 Dof, p-value 0.1942).  Diagnostics  

show that the model fit is adequate. There are some outliers, residuals larger, in absolute value, than the 

97.5th percentile of the standard normal distribution but not in an unexpected number, and 25% of the 

outliers were generated by one project.  Inclusion of the variance by stratum parameter and 

autocorrelation parameter removed any correlation in the residuals.  Examination of the conditional 

residuals suggests mild deviations from the normality assumption, especially for smaller residuals, but 

this is unlikely to jeopardize the results.  The variance is stable over Domains and Epochs. The 
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Estimated Best Linear Unbiased Predictors (EBLUPs) of the random effects are approximately 

normally distributed. 

Selections of the augmented predictions of the fitted model are shown at Figure 4 which show the 

marginal and project specific responses.  The modelled project specific predictions closely follow the 

observations. 

 

Figure 4.  A selection of projects’ observed and predicted percentage expenditures plotted vs. 

percentage time.  Population (mean) predictions (solid line), individual project predictions (dashed line) 

and observed planned percentage expenditures (circles) 

6. CONCLUSIONS 

This report examined project expenditure plans for AMCIP projects in the period 1996/97 to 2012/13.  

The expenditure plans were modelled as a Weibull distribution using a NLMM. The NLMM allows for 

a detailed modelling of the within-projects correlation structure and the prediction of individual random 

effects. The modelled within project correlation structure reflects the observed autocorrelation of 

within project expenditures. The random effects are at the project level, and represented in the model as 

random intercepts of the Weibull shape and scale parameters. The modelling demonstrates that there 

are both Project Epoch and Project Domain effects on the shape and scale parameters, suggesting that 

project planning has changed over time and is different across domains. While there have been a 

number of reviews that have influenced project planning over the years, it is surprising that there 

remain differences in planning across domains because common processes and management 

arrangements are in place for the management of AMCIP projects. There are few outliers exhibited in 

the model and a significant proportion of those were due to one project.  The model may be used by 

project and portfolio planners to test proposed spending plans against those typically seen in a long 

history of projects; hence the model provides a measure of project and financial risk. 
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