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Figure1. Pattern of Log P, MW, PSA and Log D across the top twelve targets. 

 The pattern of molecular profiles of these 12 targets is shown in Figure 1. For example, the Anti-Bacterial 
target drugs (with a median score10 of 6) were large in size (median MW = 453.66 daltons) compared to other 
targets and particularly compared to the Dietary target (median MW = 166.16 daltons). The median values of 
3 descriptors representing hydrogen bond donors and acceptors (HBd, HBa)) or electrostatic features, HBa, 
HBd and PSA, were also high for the Anti-Bacterial target (10, 3.5 and 180.82, respectively) (Table 4-5). In 
addition, the median values for the Antihypertensive (non-oral) target drugs were high for HBa (6) and PSA 
(110.4) as was the median score10 of 5 (Fig. 1). The Dietary target had the lowest median score10, median 
MW and negative medians for both log P = -2.45 and log D = -2.81 (Table 5). Notably most drugs of these 3 
targets (Anti-bacterial, Dietary, Antihypertensive) were non-oral but Ro5 compliant.  

The Antimetabolites target had a low median score10 of 1, low median MW = 244.2, but high PSA = 111.18, 
and negative median values for log P = -1.0 and log D = -0.75. Negative median values indicate higher 
hydrophobicity for both the Dietary and Antimetabolites target drugs.  Noteworthy, the median values of log P 
= 3.4 and log D = 3.58 for the Anti-allergic target drugs (non-oral, with a median score10 of 5) were higher 
than the other 11 target groups (Figure 1) evidencing that the anti-allergic drugs may prefer not to transport 
hydrophobic molecules; followed then by the Antihypertensive and Anti-inflammatory targets (non-oral) with 
respective median score10 of 5 and 4. Interestingly, median Log D for Antibacterial target drugs was negative 
-1.49 versus 0.20 for log P, indicating that log D and log P contain different information as suggested by Bhal 
et al., (2007).   

3.3.  SVM and RP results  

The SVM classifier for our score10 partition (with cutpoint 5) yielded a Matthews coefficient C= 0.887. ROC 
analyses gave high values for the area under the curve (AUC) of 98.7%, with 95% CI (98.2%-99.3%), 
sensitivity (r) and specificity (s), 0.961 and 0.924, respectively for the training set. For the validation set SVM 
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gave an AUC of 98.1%, 95% CI (97%-99.2%), r=0.927, s=0.983 and likewise a high C=0.818. The RP 
classification gave similar but slightly lower AUC and C values than the SVM. Specifically, the RP classifier 
for the score10 partition yielded an AUC of 95.1% with 95%CI (93.8%-96.4%), sensitivity of 0.918, specificity 
0.936, and C= 0.845 for the training set; for the validation set  an AUC of 95.3% and 95% CI (93.1%-97.5%), 
with r=0.924, s=0.886 and C=0.809 was obtained.  The multivariate RP rules obtained to classify the high score 
violators from the low (< 5) confirms the univariate MC/DA cutpoints of Hudson (compare Figure 2 with Table 
2).  The numbers and labels inside the rounded  rectangles delineate the number at  each recursive partitioning  
step that satisfy or not  the node cutpoint , the ligands are then split into the good and poor partitions based on 
score 10 at the next recursive step.  For example in the validation set of 320 ligands with the partition good C 
< 5, vs poor C > 5)  197 satisfy MW < 342 and are classed good (RHS Fig. 2), and 123 plased in the  poor 
partition, for which MW exceeds 342.  Of the 197 good ligands, 183 satisfy  MW < 306 - at the next step, these 
are  classed as  good,  of the 27 remaining molecules (183-156= 27) molecules  (those with log D < 4.3 are in 
good score10 partition, 13 with log D  > 4.3 are classed as poor.  Note 156+27 = 183 and 1 + 13 = 14. The RP 
classification tree also supports the value of using log D < 3.5 (< 4.3) (left hand arms of Fig. 2 for the good 
ligands) and note that Log D < 0.066 (in the training set, right hand arm, poor ligands, Figure 2) captures 
negative Log D, in the Anti-bacterial and Dietary target values for Log D or Log P (Figure 1).  

   
Figure 2. RP Classification Tree for partitions based on Score 10 with cutpoint 5.    

4.  DISCUSSION AND CONCLUSIONS   

Our work illustrates that a simple scoring function of counts of violations can partition chemospace and help 
identify both good and poor druggable molecules, and associated targets.  Moreover, ligands with 5 or more 
violations, based on adding subcomponents of score10, were shown to be associated with specific disease 
targets. The Anti-Bacterial target drugs (median score10 = 6) were found to have high values for all 10 
molecular parameters, consistent with the results of Giordanetto et al., (2014), who reported that compounds 
that fall into the  bRo5 space (higher MW and PSA) include the Anti-bacterial target. In contrast Dietary target 
drugs had low values for the 10 descriptors, lowest median score10 of 1, lowest median MW and also negative 
medians for both log P = -2.45 and log D = -2.81. Further work that aims to evaluate which of the Log D and 
Log P best reflects permeability will test different score functions, based on 9 parameters, which respectively 
omit Log P (score9D) and log D (score9P), and  find  associated best score cutpoints  (Hudson et al., in prep). 
Recently log P’s association with MW and PSA was shown to change magnitude/sign according to the 
molecule’s Lipinski’s Ro5, not so for log D (Zafar et al., 2016; 2013). Consequently future work will test for 
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Log P and Log D’s association with the remaining ligand parameters, according to the new strata based on our 
score10 partition (< 5 vs ≥ 5) in this paper and in regard to new partitions based on 9 parameters. Ongoing 
work using mixture clustering of the target-specific medians of the 10 molecular parameters aims to help 
identify so-called poor and good targets. How these targets correlate with new partitions based on 9 molecular 
parameters is a future research topic (Hudson, Shafi et al., in prep).  
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