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Figure 2. Instant profile of the wind shock-wave with different values of the amplieudéll snapshots are
taken with the fixed frequendy=5Hz at the time t=2 sec, within the 10 m (-5,+5) range.

to start with (see Figure 3 — left), and (ii) numerical differentiation is a noise-amplification procedure itself.
Therefore, the initial noise would amplify to the point that it is meaningless. Only the semi-analytical double
differentiation might work well on a sufficiently smooth {(i.e., at least twice-differentiable) data, which is

not our case.

On the other hand, numerical forward dynamics (given the forces, calculate the positande-successfully
performed by double time-integration of the empirical wind forces data extracted from the 3D Simulator, since
numerical integration is a noise-reduction procedure (emulating a low-pass filter), so even from noisy raw
forces we can calculate quite smooth velocities (times mass) and subsequently positions (times mass). In such
a way calculated dimensionless UAV positions, mostly agree as a general trend with the extracted positions
(see Figure 3). Such trend agreements between predicted and actual positions of UAVs we call “visual cross-
correlations”. Predicted UAV positions basically show what would be the actual positions if there were not
collision avoidance systems on the UAVs.

Figure 3. Raw UAV position data in 890 discrete time steps (left) and double-integrated force data (right).
The required scaling can be interpreted as an unknown radius-dependent mass (which is a parameter in the
Bullet physics engine), while the required vertical shift can be interpreted as two integration constants: initial
position and velocity. Finally, the double-integrator provides a smooth output (it naturally behaves like a low-
pass filter), while the UAV dynamics is highly-fluctuated, as a response of its collision-avoidance system to
the wind shock-wave within the confined urban environment.

Encouraged by the preliminary analysis, we have performed numerical Forward Dynamics: {(Farges=
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(Motions {x,, }), starting with the wind force dat#,, from the input CSV-file, and calculating the predicted
UAV-positionsz,,, using the double Euler integration, as (see Chapra and Canale (2009)):

Upy1 = Up + frdt, Tpy1 = Ty + vpdt, 3)

wherev,,are the calculated velocities (times mass) dhis the time-step averaged from the input CSV-file.
The Fortran 90 code (available on request) was developed to read the forgg, deden the input CSV-file,
perform the Euler integration given by Eq. (3) along the three Cartesian(axgsz) and output both input

and output data (all scaled-down by 1000 for easier interpretability) into the output CSV-file for the easy
plotting in Excel.

Firstly, we compare predicted and simulated actual positions for a single UAV. We define the “visual cross-
correlations” as “mostly agree as a visual trend.” We can see on the graphs that the same behavior often
appears, with corresponding regions that are flat or have the same slope, indicating the same visual trend.
These regions are circled.”

This qualitative analysis of synthetic data has only an indicative value and is not conclusive. The simulated
environment is too complex to be conclusively represented by any qualitative relation.

A sample chart with default wind amplitude and frequency is shown in Figure 4. Similar charts are obtained
with doubling the amplitude and with doubling the frequency.
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Figure 4. Single UAV: qualitative comparison of the actual UAV-position vectors gy, p.) and predicted
positions(z, y, z) calculated by double-integrating the force data in three sample simulations with default
values of both amplitude and frequency of the wind shock-wave field. The labels on the vertical axes denote
displacement in meters.

Secondly, we compare predicted and actual positions for three UAVs. All “visual cross-correlations,” showing
that signals mostly agree as visual trends, are circled as in the previous subsection.

A sample chart with default wind amplitude and frequency is shown in Figure 5. Similar charts are obtained
with doubling the amplitude and with doubling the frequency. We remark that doubling the wind amplitude
has more effect than doubling the wind frequency (provided in the longer paper version).

From these charts, we can see that a number of “visual cross-correlations” have been identified, more so in
the case of three UAVS. The simulated behavior shows some features of the analytically predicted behavior,
but not all. Analytically predicted behavior does not take into account the intelligence of the adversary UAVs:
they group together and land down as soon as the wind is triggered on (this is their fuzzy entanglement, a
consequence of the fuzzy-logic based collision-avoidance system). So, all qualitative analysis can be used
only for illustrative purposes, and for these purposes this is enough. The proposed conclusion is the following:
synthetic model-extracted data analysis shows the capability of the wind turbulence model as a soft-attrition
weapon against the team of smart UAVS, each enabled with a sophisticated collision-avoidance system that is
far superior than any existing UAV collision-avoidance system (each UAV has 6 radars and 6 sonars combined
in a smart nonlinear controller). This smart collision-avoidance system effectively counteracts the wind field.
Recall that, in the first place, the 3D UAV simulator has been built to show superior UAV control under
turbulent wind conditions. Now, even in these competitive conditions against the smart adversary, the wind
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Figure 5. Group of 3 UAVs: Qualitative comparison of the actual UAV-position vectp’;sg(;,pi; for
1=1,2,3) and predicted positiofs, y, z) calculated by double-integrating the force data in three sample sim-
ulations with default values of both amplitude and frequency of the wind shock-wave field. The labels on the
vertical axes denote displacement in meters.

shock-wave field performs well. A less sophisticated adversary would be simply blown away in the open
environment or into the walls in the confined environment.

4 DISCUSSION

Nine simulations have been performed with a single UAV and nine with a team of three UAVs (raw data are
available on request). These raw data, including wind forces and UAV positions, suggest that the stronger the
wind amplitude and/or the frequency the stronger the effect.

There may be a frequency of wind that causes maximal interference with a copter based UAV's flight and
control system (if it has no compensator), that is the UAV is blown further away, both in case of a single
UAV and a team of UAVS, although in the case of teams the wind-motion relation is more complex due to
collision-avoidance interactions. Also, increasing the wind amplitude has a stronger effect than increasing the
wind frequency.

The simulated values for wind strength/frequency are only “visually realistic” (i.e., the “visual cross-
correlations” behave as expected), because non-dimensional physical units are used, defined by the Bullet
physics enginé.

It should be possible to find a resonance frequency, specific to a certain kind of quadcopter, which would
interfere with the UAV’s navigation system as well, In this way, a UAV would be both control-disabled and
blown away. However, this frequency parameter is actually a wave number, that is, frequency bothtin time
and in spacéz, y, z), so the situation is a bit more complex.

In any case, predicted UAV positions (calculated as double time-integrated forces) show what would be the
actual positions if there were not collision avoidance systems on the UAVSs.

In an open space, the model produces a fast train of blasts, or shock waves, which inside a confined environ-
ment produces a field of turbulence which blows away all small objects.

Therefore, the proposed wind turbulence model shows a new capability, an effective soft-attrition weapon
against a smart adversary team of UAVS, significantly more intelligent than any low-price commercial UAVSs.
Performance of the wind turbulence model would be much higher against a less intelligent adversary UAVSs.

A very strong version of the standard leaf-blower can be used as a wind cannon against small UAVs. For big
UAVs the same design with a stronger turbine could be used. However, this simplistic kind of a wind-blower,
no matter how strong, will be damped by the inverse square law:*}] whered is the Euclidean standoff
distance between the UAV and the wind source. On the other hand, a small and portable jet turbine, which
we call a “wind canon/machine gun”, would produce a non-dissipative (zero damping) solitons, i.e., traveling

2From the visual impression, assuming a UAV mass of the order of magnitude of 1kg, a human with e.g. 80 kg should be able to maintain
a stable walk through the wind shock-waves even with a double amplitude. This is dependent on the amplitude of the wave generated by
the jet turbine (see Figure 2).
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waveswith high speedand constantkinetic energy. In otherwords, the force-field of the wind shock-vave
doesnot dependon the distancebetweenthe UAV andthe wind source— the wind wavetravelsthroughthe
confined(indoor-like) environmentand hits a UAV with the sameamplitudeand frequencywhereverit is
currently located. However, at this stage,this is only a hypothetical“wind canon” model, definedby the
Tanh-solitonEgs. (1)-(2).

Thereforethetheoreticalwind-forcemodeldefinedby Egs. (1)-(2)is showingthatin a confinedspacgwithin
shortdistancesyve havea non-dissipatindorcefield with thefull conservatiorof energy.Howeverwhenwe
go to the physicalapplication,if we usea leaf-blowertype of a wind source thenwe haveto dealwith the
inverse square type of dissipation of energy.

Insidea confinedspacglike anaircrafthangeryawind turbine,with theactiondefinedby the modelEgs. (1)-
(2) cangeneratea tornado-typewind turbulencethatwould smashall UAVs into the walls, regardles®f their
weights.In anopenspacgoutsideof thehangerthemodelproducesfasttrain of shock-wavegwind blasts),
depending on the frequency parameter k, which will repel thédlike a fast series of punches (k=10Hz).

5 CONCLUSION

The3D UAV simulatorshowsthatevena smartteamof UAVs canbeblown awayby thewind turbulence.All
gualitativeanalysisof thesesyntheticdatais only illustrative, becausehe simulationis too complexandtoo
nonlinearto berepresentetly a simplequalitative/statisticalelation. Changingthe point of view is necessary
here. We havea fast train of wind shock-wavesvhich in a confinedenvironmentproducegurbulencethat
blowsawayall smallobjects.The proposedvind turbulencemodelshowsa new capability,the effectivesoft-
attrition weapon against the smativersary tearnf UAVs, which expresses fuzzy entanglembahavior.
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