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The model has 138 parameters that need to be estimated to enable the model to reproduce observed data, of 
which 124 appear in the boundary eigenvalues and hence may be pre-conditioned by the boundary 
eigenvalue nudging (BEN) method. 

 

Figure 1. Schematic of the plankton ecosystem model. Black arrows indicate flows of mass due to 
nutrient uptake or predation (for clarity not all these arrows are shown) and grey arrows indicate 
flows of mass due to implicit bacterial remineralisation of excreted or deceased biological material. 

2.2. The Boundary Eigenvalue Nudging (BEN) Method 

An n population Kolmogorov system has 2n  sets of equations that define the locations of its equilibrium 
points. Each of these points has n eigenvalues, so the system has n2n  eigenvalues (ignoring the detail that 
some sets of equations may define more than one location), n2n−1 of which are (trivially) known analytically. 
The BEN method utilizes the n competition eigenvalues of the n boundary equilibrium points where a single 
population is zero. We have designed the model to have structural coexistence, a property that is ensured by 
using non-vanishing terms for all growth processes and vanishing terms for all loss processes (Cropp and 
Norbury 2012b). Vanishing terms are those that go to zero as the population of interest goes to zero and 
include terms such as Holling Type III grazing and nonlinear mortality. Non-vanishing terms do not have this 
property and include terms such as Holling (Types I, II and III) and Michaelis-Menten growth. Structural 
coexistence ensures that all the ecologically realistic equilibrium points of the model exist in the ecospace. 
Each of these n competition eigenvalues is given by the life function of the population evaluated at the 
boundary equilibrium point at which it is zero. For our example model, we note that, due to the structure of 
the equations (3)-(6), these eigenvalues are composed only of the (positive) growth terms of each life 
function. We note that this approach, which has a solid theoretical basis, is a preferable solution to the 
problem of in silico competitive exclusion than some of the computational approaches such as using “just so” 
initial conditions and/or vulnerability functions (for example, Fournier et al. 2011). 
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The BEN method proceeds by integrating the model to steady state. (Note that substantial numerical analysis 
of models with structural coexistence has suggested that having a stable interior equilibrium point is a 
property of such models (Cropp and Norbury 2012b, 2013, Bates et al. 2015) but we have yet to prove this. 
Having a stable steady state is no more crucial to the success of the BEN method than it is to any other 
calibration method, however, it does shorten the integration times required.) The magnitude of the difference 
between the model estimate and the desired solution is calculated for each population: 

 Di = xi
* − xi

D  , (8) 

where xi
*  is the model solution and xi

D  is the desired solution. The population with the largest Di  is 

identified and its key parameters selected for modification. There are many ways of choosing the parameters 
to be adjusted to improve the model estimates – the simplest is perhaps just to adjust the growth rate of the 
population up or down depending on whether it is less or greater than its desired population level. Here, we 
utilize a similarly simple principle: if the population is larger than desired we reduce its maximum growth 
rate ( μi  in the case of phytoplankton, ϕi , j  in the case of all other populations). The convergence of the 

method may be improved by further identifying the population that it interacts with that is most wrong in the 
opposite direction. For example, if a phytoplankton population is too large, we identify the zooplankton 
population that is too small, and increase the rate of its grazing on the phytoplankton that is too large. 
Similarly, if a predator population is, for example, too small, we increase its grazing rate on the prey that is 
too large. 

There are also a number of ways to estimate how well each model integration fits the data, and in common 
with other optimization methods, the choice of these will influence how the method converges and what 
parameters it adjusts. We have chosen the simple metric of the absolute difference for this example, which 
has the desirable characteristic of optimizing the system from the lowest trophic levels up. The overall 
convergence of the method is tracked with the Euclidean Error of each integration m:  

 Em = xi
* − xi

D( )2

i=1

n

  . (9) 

The form we have shown optimizes from the lowest trophic levels of the food web up, as its goal function 
considers only absolute error. Other optimization strategies may be implemented by choosing more 
sophisticated goal functions. The BEN method was implemented for 10 runs each of 20 model evaluations to 
collect data on its efficacy and convergence. The final state of each BEN run was used as the initial state for 
an associated GA optimization to improve the parameter estimates, this time including the 14 mortality 
parameters not included in the BEN process. This coupling of the BEN and GA methods gives us the 
Boundary Eigenvalues Nudging – Genetic Algorithm (BENGA) method. 

2.3. The Genetic Algorithm (GA) Method 

The GA used the final state of its associated BEN run as its initial state and a parameter space of ±50%  of 
the BEN result was defined as the search space. One individual of the initial population was assigned to 
values of the final BEN result and the other 19 individuals were randomly generated from the search space. 
One generation of the GA was therefore equivalent in model evaluations to one run of the BEN. The GA was 
run for 50 generations of a population of 20 individuals (i.e. 1,000 model evaluations). It used 10 bits to 
represent each parameter (so each individual was represented by a binary string 1,380 bits long) and 
implemented an initial mutation probability of 0.01 for any bit, a final mutation probability of 0.005, an 
initial cross-over probability of 0.75 for any individual and a final cross-over probability of 0.975. The 
probabilities were scaled from the initial to the final values using a power law. Reproduction was 
implemented using a Monte-Carlo method to select the breeding population. The best individual from the 
preceding generation was always retained so that the GA best fit, unlike the BEN best fit, never got worse.  

3. RESULTS 

The convergence of the BEN and GA methods, as a function of the total number of model evaluations is 
shown in Fig 2. Each of the BEN runs performed 20 model evaluations, while each run of the GA performed 
1,000 model evaluations (i.e. the BEN part is equivalent to one generation (of 50) of the GA part). The 
parameter spaces searched were the same. The data for each run was scaled by its initial value prior to 
calculating the average and standard deviation of the 10 runs. 
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Figure 2. Average convergence of 10 runs of the BEN (left) and the GA (right). Error bars are ±  one 
standard deviation. The curves of best fit are given in (10) and (11). 

The curve of best fit through the average scaled Euclidean distance for the BEN is: 

 EB = 1.16n−0.33, RB
2 = 0.94  , (10) 

while the curve of best fit through the average scaled Euclidean distance for the GA is: 

 EG = 1.97n−0.17 , RG
2 = 0.93 , (11) 

where EM  is the average scaled Euclidean distance between the model estimate and the desired solution for 

method M and n is the number of model evaluations.  

 

Figure 3. Average convergence of 10 runs of the BENGA. The best starting population for each GA 
run was the completion point of the associated BEN run. The remainder of the initial population was 

created a parameter space defined by ±50%  of the BEN solution. Legend as for Fig 2. 

It is clear from these results that the BEN initially converges more rapidly than the GA and hence is useful to 
precondition the GA’s parameter search space. However, the BEN does not operate on the entire parameter 
set, and cannot be used independently. Further, the BEN only operates on a very small subset of its 
parameters at each evaluation (those associated with the worst production terms) and only optimizes one to 
several parameters per model evaluation to improve the fit of one or two populations. The GA in contrast 
operates on the whole parameter set to improve the fit of all populations simultaneously. Depending on the 
probabilities used for mutating and crossing-over particular alleles, which must be optimized for each 
problem, the GA can optimize many parameters at each model evaluation. The real benefit then lies in 
combining the two methods. When the methods are combined the benefits of the BENGA are clearly evident 
(Fig 3). The curve of best fit through the average Euclidean distance between the model estimate and the 
desired solution for the BENGA is: 

 EBENGA = 1.36n−0.39, RBENGA
2 = 0.97  . (12) 

This relationship predicts that 1,000 model evaluations by the BENGA will result in the Euclidean distance 
reducing to about 10% of its initial value. In contrast, equation (11) predicts that 1,000 model evaluations by 
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the GA alone will result in the Euclidean distance reducing to only 60% of its initial value, approaching an 
order of magnitude difference in convergence. Although these estimates of the rates of convergence are 
dependent on the number evaluations considered, and for large numbers of evaluations the GA’s rate of 
convergence will dominate, the BENGA evidences a more rapid convergence than the GA. 

4. DISCUSSION AND CONCLUSIONS 

The analytical properties of Kolmogorov systems, that allow simple and explicit formulae for the eigenvalues 
of boundary equilibrium points associated with populations that are identically zero at these points facilitates 
the development of a new parameter optimization method. The BEN method does not operate on all 
parameters, nor optimize all populations simultaneously as some other methods do, and cannot optimize 
parameter sets independently. However, the GA does operate on all parameters and optimizes all populations 
simultaneously, but GA convergence slows dramatically as the dimension of the parameter space increases 
(Mitchell 1997). The BEN is useful to efficiently precondition the GA’s parameter set by constraining its 
range. The BENGA evidences more rapid convergence to an optimum solution than either method 
independently. Suitable choice of the error metric allows the convergence to prioritise different parts of the 
dynamical system.  
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