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language (which can take from hours to many weeks), importing data into R, identifying the algorithm/s to 
use and the R package required for each algorithm, importing R package/s into the R environment and then 
running the algorithm/s (all individually), and then learn how to visualise and manipulate outputs (to create 
maps/graphics). Depending on the individual user, this process could take from weeks to months. The 
BCCVL negates the need for any of this preparatory work - it also negates the need for script writing, 
advanced programming or modelling expertise.  

The resulting increase in research capability and efficiency will facilitate the development of additional 
research trajectories currently not possible due to logistical and the computational limitations of individuals 
and many research groups. For example, ensemble modelling experiments involving large numbers of SDMs, 
climate model projections, and emissions scenarios, which were once logistically quite challenging, are now 
accessible via a web browser. 
The BCCVL is likely to set a new standard in the complexity and comprehensiveness of the experimental 
design expected of species distribution modellers. For example, the ability to perform large numbers of SDM 
experiments easily will enable more comprehensive comparisons of different SDMs, competing sets of 
potential explanatory variables, the available climate change models, emissions scenarios and projection 
periods. It will also greatly facilitate sensitivity analyses on parameter values. 
Using the BCCVL will increase research productivity (in terms of time saved and scientific output), which 
will confer advantages both at the level of the individual scientist and research communities.  Moreover, the 
BCCVL enables researchers to share data and modelling frameworks, promoting the use and reuse of data, 
which is currently underexploited (Peters et al. 2014) and enabling greater transparency in the research 
process. 
 
2.  DESCRIPTION OF THE BIODIVERSITY AND CLIMATE CHANGE VIRTUAL 
LABORATORY 
A link from the BCCVL homepage at http://www.bccvl.org.au allows anyone with an Australian Access 
Federation (AAF) password to log into the BCCVL. Other domestic and international users can request a 
login account with the BCCVL, or log in either by acquiring a guest AAF account, or via the AAF Virtual 
Home. 
 
2.1.  Structure and functionality 
The BCCVL comprises three components: 
 
Datasets 
The Datasets section of the BCCVL houses species location and trait data, current and future climate data, 
and other environmental data (e.g., soil, geology and vegetation type).  Brief dataset summaries are listed on 
the front page of the dataset section, which provides the choice of viewing a map of the dataset (overlain on a 
national map), downloading the dataset, or accessing metadata in a pop-up box. This page allows users to 
search among the datasets provided by the BCCVL, shared datasets, and self-uploaded datasets.  
Searches can be filtered by dataset type (species absence, abundance, occurrence, and traits; current and 
future climate, and other environmental datasets), as well as resolution (90 m, 250 m, 1 km, 5 km, 10 km, 20 
km, and 50 km). The datasets page also provides a facility to search for, view, import and share a species 
dataset from the online repositories such as the ALA. Users can upload their own species occurrence, 
abundance or trait datasets, and other environmental datasets, and share them with fellow BCCVL users if 
they choose to. Recent changes to open (free) data policies, such as the Landsat program, and the 
requirements of some government funding bodies, have greatly expanded the range of data accessible to 
researchers. A list of datasets currently accessible within the BCCVL are listed in Hallgren et al. (2015), and 
the BCCVL has the capacity to add additional datasets as needed. 
Climate Change Projection Data: The future climate data that the BCCVL provides for projecting species 
distribution models with climate change scenarios, is derived from global climate change modelling which 
was carried out by using the MAGICC4.1 climate model (Wigley and Raper, 2001; Lowe et al., 2009) and 
the pattern-scaling module ClimGEN (developed from Mitchell, 2003; see also Warren et al., 2008; Osborn, 
2009), both of which are designed explicitly to emulate the behaviour of the complex models so that impact 
modelers can study emission scenarios that have not been simulated by the GCM modelers. Hallgren et al. 
(2015) describes in detail the methodology used to produce the climate change projection data utilised in the 
BCCVL. 
Experiments 
The Experiments section of the BCCVL allows users to access a suite of statistical modelling and analytical 
tools. There are currently five different types of experiments users can undertake:  
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a) Species Distribution Modelling Experiments identify the potential distribution of a species given 
current climate conditions; 

b) Climate Change Experiments project a current species distribution into the future based on a climate 
projection, for one or more emission scenarios; 

c) Biodiverse Experiments calculate biodiversity statistics (species richness, rarity and endemism) 
based on species distribution modelling results; 

d) Species Trait Modelling Experiments (STMs) identify future distributions of a particular species 
trait (e.g. Leaf Area Index);  

e) Ensemble Modelling Experiments enable the utilization of multiple models (SDMs, STMs or climate 
models) or scenarios to reduce some of the uncertainty inherent in the single-model/scenario 
approach. 

The SDMs are the core functionality of the BCCVL as their results are used in most of the other components. 
There are currently 19 SDM algorithms available, as well as five algorithms employed in species trait 
modelling. These include the popular and well-known MaxEnt (Phillips et al. 2006) and Artificial Neural 
Networks (Hilbert,& Van Den Muyzenberg,1999), as well as simpler and more easily comprehensible 
algorithms, such as Bioclim (Nix, 1986) and Mahalanobis Distance (Mahalanobis, 1936). A demonstration of 
how to use the BCCVL to implement a species distribution modelling experiment, as well as a list of all 
algorithms currently employed in the BCCVL is given on homepage of the BCCVL website 
(http://www.bccvl.org.au).  

The algorithms that are currently implemented in species trait modelling within the BCCVL include not only 
algorithms specifically designed to model species distributions (e.g. MaxEnt, Bioclim), but also widely used 
statistical methodologies such as Generalized Additive Models, Generalized Linear Models, and also other 
common statistical methodologies such as linear models, analysis of variance, and multivariate analysis of 
variance. The BCCVL automatically facilitates modelling experiments at multiple scales: currently the range 
of resolutions available for modelling experiments is 90 m to 50 km.  

Knowledge Base and Decision Support Tool 
The Knowledge Base is designed as a repository of information about many facets of the BCCVL. It includes 
a glossary, background information on all modelling algorithms, links to key references and papers, as well a 
Decision Support Tool to guide the user, and provide as much information as they need to conduct the 
experiments offered by the BCCVL in an intelligent and sensible manner. This feature of the BCCVL will 
also be improved by continuing user input and feedback.  
 
2.2.  Technical details  
The BCCVL utilises a variety of open source software packages. These are operated on the Australian 
National eResearch Collaboration Tools and Resources (NeCTAR) Research Cloud, which will provide 
35,000 cores of processing capacity hosted at eight nodes (data centres) distributed across Australia. The 
BCCVL's architecture is designed to handle large datasets, process data through experiments, display 
experiment outputs and securely share data within a cloud-based setting.  The BCCVL is novel in its 
utilisation of cloud-based technologies to perform modelling functions traditionally reserved for cluster 
services or purpose built High Performance Computing. Cloud based technologies are built on enterprise 
level data centre infrastructure and achieve scale and resilience through the ability to easily add and replace 
individual components; they will enable the BCCVL to easily scale to meet new demands for processing or 
storage capacity. 
Within the application, the BCCVL is composed of six discrete components, comprising: (i) visualizer, (ii) 
front-end user interface, (iii) back-end manager, and (iv) data mover components, as well as (v) job execution 
and worker node, and (vi) swift object storage components. These components communicate through 
common Application Programming Interfaces (APIs) such as SOAP, JSON and XL-RPC to enable 
modularity and the ability to add additional resources or features to the BCCVL whilst in operation.  All code 
is open source and available on GitHub at https://github.com/BCCVL. The biodiversity experiments are 
implemented using the Biodiverse platform (Laffan et al. 2010; http://purl.org/biodiverse). Hallgren et al. 
(2015) provides a schematic of the major components and information architecture of the BCCVL, as well as 
further technical details on the six components that constitute the BCCVL. 
 
3.  CASE STUDY: USING THE BCCVL TO MODEL CURRENT AND FUTURE 
DISTRIBUTION OF A MAJOR DISEASE VECTOR SPECIES  
We present here a case study that illustrates the utility of the BCCVL as a research tool that can be applied to 
the problem of vector borne diseases and the likelihood of climate change altering their future distribution 
across Australia. This case study presents the preliminary results (Fig. 1) of an ensemble modelling 
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experiment which employs multiple (15) different species distribution modelling algorithms to model the 
distribution across Australia of one of the main mosquito vectors of the most common vector borne disease in 
Australia: Ross River Virus (RRV).  

  
 
Figure 1.  Results of 12 Species Distribution Models run with current climate and projected climate for 2085, 

for the Representative Concentration Pathway 8.5 scenario. The 12 models are Artificial Neural Network 
(ANN), Bioclim, Boosted Regression Tree (BRT) model, Classification Tree Analysis (CTA), Generalized 

Linear Model (GLM), Maximum Entropy Model (MaxEnt), Domain, Flexible Discriminant Analysis (FDA), 
Generalized Additive Model (GAM), Mahalanobis Model (Mahal), Multiple Adaptive Regression Splines 

(MARS), and Random Forest (RF). 
 

A dataset of 932 occurrences (comprising latitude/longitude coordinates) of the mosquito species Aedes 
vigilax was downloaded from the GBIF website and uploaded to the BCCVL. We then ran a 'Species 
Distribution Modelling Experiment' in the BCCVL with this data, which comprised six predictor variables 
for current climatic conditions which are known to influence the distribution of this species; annual mean 
temperature, maximum temperature of the warmest month, minimum temperature of the coldest month, 
annual precipitation, precipitation of the wettest month and precipitation of the driest month, all having a 5 
km resolution) (Yu et al., 2014).  
These variables were input into 15 species distribution modelling algorithms that have been incorporated into 
the BCCVL; Artificial Neural Network (ANN), Bioclim, Boosted Regression Tree (BRT), Circles, 
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Classification Tree (CT), Convex Hull (CH), Domain, Flexible Discriminant Analysis (FDA), Generalized 
Additive Model (GAM), Generalized Linear Model (GLM), Mahalanobis Model (Mahal), Maximum 
Entropy Modeling (Maxent), Multiple Adaptive Regression Splines (MARS), Random Forest, (RF) Voronoi 
Hull Model (VH)).  
We then ran a 'Climate Change Experiment' in the BCCVL to model the future projection of A. vigilax (using 
the same predictor variables) with multiple future climates based on two extreme emissions scenarios 
(RCP2.6, RCP8.5, as simulated by the CSIRO Mark3 global climate model). We ran this experiment for two 
points in time representing the medium (2045) and long term (2085) future. 
We present here the results for only 12 out of the 15 SDMs, due to the divergence of the projected 
distributions of the Circles, VH and CH models from those of the rest of the 15. Due to these three models 
being mainly used for pedagogic purposes in the current SDM literature, we chose to exclude these from this 
analysis and focus on the models with known better predictive skill. 
We also only present here the Climate Change Experiment results for 2085, due to the much smaller 
differences seen between the modelled distributions based on the current climate and the year 2045 climate 
projection. Our results show a large modelled range both within and between the current and projected future 
distribution of A. vigilax. Most models show somewhat similar distributions of the species however there are 
three models that are obvious outliers (Domain, Mahal and BRT) (Fig.1).  
The projected models show a similar range in the distribution of the species, with four models indicating 
fewer areas (and often a lower probability of occurrence in specific areas) where A. vigilax is likely to be 
found under the RCP8.5 climate change scenario in 2085 (ANN, Bioclim, BRT, and Mahal). Domain shows 
a slight decrease in the probability of occurrence over large areas of Australia. However, seven models CTA, 
FDA, GLM, GAM, Maxent, MARS, and RF) show an expanded distribution of A. vigilax, with areas that 
have a greater probability of the occurrence of this species. Thus, the majority of models predict an expanded 
range for A. vigilax in 2085, with some areas showing a higher probabiliy of occurrence,under a high future 
greenhouse gas concentration scenario. 
The economic and human health impact of vector borne diseases underlie the importance of scientifically 
sound projections of the future spread of common disease vectors such as mosquitos under various climate 
change scenarios. This is because such information is essential for policy–makers to identify vulnerable 
communities and to better manage outbreaks and potential epidemics of such diseases. We have shown that 
using a tool such as the BCCVL can provide the means to robustly and efficiently bracket one source of 
uncertainty in the future spread of the RRV: the future distribution of a primary mosquito vector of the 
disease. Research is underway to expand our analysis to include more vector and amplifying host species, as 
well as future climate projections from a range of different global climate models.  
 
4.  CONCLUSIONS  
 
The BCCVL is a unique tool for the facilitation of research into the impacts of Climate Change on 
Biodiversity. Strong feedback from researchers in the first few months after the launch of the BCCVL 
confirms that the goals of lowering the technical requirements for conducting research into climate impacts 
on biodiversity, as well as reducing the time it takes to do such research, have been met. These two factors 
are designed to feed into productivity gains for individual researchers, and will likely propel the field forward 
in terms of the number of species, and species traits which will be the subject of biodiversity-climate change 
modelling experiments and analyses. As such, we believe that the BCCVL represents a significant step 
forward for the species distribution and species trait modelling community, and will likely broaden the 
complexity of the experimental design and the scope of the research undertaken in this field in the future.  
The use of the BCCVL to model the current and projected distribution of one of the main species of 
mosquitos which act as vectors for Ross River Virus, using a large number of algorithms, has effectively 
illustrated the ability of the BCCVL to bracket the uncertainty surrounding the potential spread of this 
disease vector in the future, in terms of the choice of algorithm used to model the species, and in terms of the 
emission scenario used to inform the projections of future climate, upon which the projected distribution is 
based. Of course, there are multiple sources of uncertainty involved in these predictions- such as climate 
model or algorithm parameter value choice- both of which will be the focus of future research employing the 
BCCVL.  
The BCCVL is in constant development and current feature limitations of the BCCVL includes the restriction 
of modelling experiments to the Australian continent, unless users upload their own international 
environmental datasets. The BCCVL is also constrained by current methods of Species Distribution 
Modelling, and the issues associated with current SDMs and indeed many environmental models. Future 
development of the BCCVL will focus on linking to more species occurrence and species trait databases, 
adding the ability to model multiple species simultaneously within the one experiment, adding more 

1453



Hallgren et al., The Biodiversity and Climate Change Virtual Laboratory 

 

environmental datasets, and potentially other species distribution models, species trait models, and post-
modelling analytical tools.  
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