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Figure 1. (left) a custom-designed quadcopter with a sensor load of just over 1 kg; and (right) the QuestUAV 
system. The UAVs carry a common sensor package comprising a SONY NEX-7 20MP digital camera, an 
Optris-Pi450 broadband thermal camera (7.5 to 13 µm) and a Tetracam MiniMCA that records 6 unique 

spectral bands across the VNIR (i.e. 490, 560, 665, 705, 740, 865 nm center wavelengths) that is configured 
to match those on Sentinel-2, a new satellite system launched in June 2015. 

3. VEGETATION PRODUCT RETRIEVAL FROM SATELLITE AND UAV DATA 

Preliminary vegetation retrievals using the commonly applied Normalised Difference Vegetation Index 
(NDVI) and Leaf Area Index (LAI) (Carlson and Ripley, 1997) were derived from the Tetracam MiniMCA 
system and also from available and near-coincident satellite imagery via the Landsat and RapidEye systems. 
Multi-spectral (blue, green, red, red-edge, near-infrared) at-sensor radiance data from RapidEye acquired at 5 
m resolution on DOY 87 (March 28), 102 (April 12) and 151 (May 31) were atmospherically corrected to 
surface reflectances using 6S (Kotchenova et al., 2006) following the automated processing stream 
implemented in the regularized model inversion system, REGFLEC (Houborg et al., 2015b). To do this 
required spatially distributed information on aerosol optical depth at 550 nm, total precipitable water and 
total ozone, which was acquired from the Terra MODIS aerosol product (MOD04), the Terra MODIS water 
vapor product (MOD05), and the Aura Ozone Monitoring Instrument (OMI), respectively. Needed 
information on vertical profiles of temperature, humidity and ozone were determined from the Aqua AIRS 
standard product and the aerosol type and profile was assumed from a background desert aerosol model 
(D’Almeida et al., 1991). Multi-spectral (blue, green, red, near-infrared) Landsat-8 data acquired at 30 m 
resolution on DOY 153 (June 2) were similarly corrected to surface reflectances.  

 

Figure 2. NDVI retrievals from (left-to-right) Landsat at 30m, RapidEye at 6m and a single image from the 
Tetracam at approximately 10 cm resolution. Data were collected over an irrigated alfalfa field. 

The raw uncalibrated Tetracam imagery collected on DOY 153 was translated into atmospherically corrected 
RapidEye consistent NDVI, by identifying bright and dark calibration targets to be used with the empirical 
line calibration method (Berni et al., 2009). Figure 2 demonstrates the derived multi-scale (30 m to around 
~10 cm) features of NDVI over an irrigated alfalfa pivot field, located at the Tawdeehiya farm in the Al-
Kharj region of Saudi Arabia. UAV data was collected from a flying height of approximately 500 ft. The 
high degree of within-field variability resulting from inefficient irrigation and soil variability can be seen, 
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together with crop damage caused by the impacts of high winds in the few weeks before the UAV collection. 
The NDVI maps in Figure 2 feature data from near coincident satellite based retrievals including the freely 
available Landsat satellite, as well as the RapidEye commercial high-resolution system that provides 5 
spectral bands at around 5 m resolution. Only a single image from the UAV is presented here as an example 
of the high-resolution detail available from these systems. As can be seen, the fine scale features of the crop 
circle are evident, including tire marks from the rotating pivot as well as within-field variability in crop 
condition. For instance, the low NDVI values (blue area in UAV retrieval) are the result of saturated soil 
conditions on-site, which limit crop growth. These features are evident in the RapidEye image (center of Fig 
2), but largely absent at the Landscat scale, highlighting the multi-scale and heterogeneous nature of crop 
conditions.  

To develop additional vegetation retrievals, LAI was retrieved from RapidEye data using a rule-based multi-
variate regression model established by Cubist (RuleQuest; www.rulequest.com). Cubist represents a data 
mining approach for identifying effective predictive models on the basis of a training dataset of observed 
target and explanatory variables. In this study, the training dataset consisted of in-situ LAI (n=96) collected 
with a LICOR-2200C plant canopy analyzer in fields of alfalfa, grass, carrot and maize during field 
campaigns in March, April and June. The associated explanatory variables of appropriate spectral bands and 
vegetation indices (VIs) were extracted from RapidEye imagery within 2-5 days of the in-situ collections. A 
total of three rule-based models with varying contributions from the input spectral bands and VIs were 
constructed to map LAI during the RapidEye acquisitions, with an error of 0.17 and a Pearson’s correlation 
coefficient of 0.97. In order to avoid highly unrealistic LAI retrievals resulting from a non-representative 
predictive model assignment to a given pixel, the retrievals were compared against values of LAI calculated 
from NDVI using an exponential function established on a per-pivot basis. That is, if the Cubist and NDVI 
derived estimates diverged by more than 3 times the standard deviation of the exponential fit, the NDVI 
based estimate of LAI was used. 

 

Figure 3. LAI derived from RapidEye data (left) using a multi-variate regression model based on in-situ 
measurements at the Tawdeehiya farm across a range of crop types. LAI for the UAV (right) was based on a 

simple exponential function linking NDVI with LAI at the RapidEye scale. 

The UAV based LAI for the alfalfa field was derived from RapidEye LAI using a simple NDVI based 
downscaling approach. While Cubist identified two separate multi-variate regression models for mapping 
LAI over the alfalfa field, an exponential relationship between NDVI and LAI of the form: ܫܣܮ = 0.02297݁଻.଺ଶ଺.ே஽௏ூ + 0.2297        (1) 

provides a reasonable approximation for this specific pivot (r = 0.96, rmsd = 0.6 or 16%). Given the 
consistency between Tetracam and RapidEye NDVI (Fig. 1) this relationship can be directly applied at the 
UAV scale with confidence (Fig. 2).  
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Although only traditional metrics of plant health are shown here, bands in the red-edge region of the 
electromagnetic spectrum have proven informative in estimating leaf chlorophyll (Chl) content (Dash and 
Curran, 2004; Gitelson et al., 2008), which is of particular interest in precision agriculture applications 
(Haboudane et al., 2002). Likewise, indices based on the reflectance change in the green spectrum (Gitelson 
et al., 2002) are useful for estimating leaf carotenoids, which are involved in the xanthophyll pigment cycle 
that changes in response to photosynthetic down-regulation through non-photochemical quenching (Grace 
and Logan, 2000). Ongoing work will seek to develop maps of spatially distributed pigment concentrations 
(i.e. chlorophyll and carotenoids), which will serve as independent measures of plant health and condition, 
indirectly reflecting spatial variations in nitrogen availability and potential stress. 

4. DETERMINING LAND SURFACE TEMPERATURE FROM THE UAV DATA 

The availability of co-registered and spatially consistent visible-to-near-infrared (VNIR) (including red-edge 
bands) and thermal-infrared (TIR) data from our UAVs (see Fig. 1) is unique in a remote sensing context. 
This capacity provides an opportunity for investigating synergistic uses of these data for monitoring not only 
crop growth and vegetation vitality, but also water use. Since leaf temperatures respond directly to water 
stress through induced stomatal closure and decreased evaporative cooling, the integration of thermal infrared 
observations provides an additional means to detect 
vegetation stress before chlorophyll reductions take place 
(Gitelson et al., 2008; Houborg et al., 2011). Deriving such 
thermal and vegetation based products will aid not only in 
characterizing crop behavior throughout the growing 
season, but also offers an important observational constraint 
that can be integrated directly into coupled water and energy 
balance approaches for estimating evaporation or other 
hydrological processes (McCabe et al., 2005; Stisen and 
McCabe, 2012).  

An Optris-Pi450 broadband thermal camera operating in the 
range 7.5-13 µm was flown in conjunction with the 
MiniMCA over the alfalfa field to map coincident 
vegetation and thermal response. As can be seen in Figure 
4, there remain some artifacts as a result of sensor 
calibration sensitivity to high field temperatures during data 
collection (greater than 45°C). Automated triggering and 
stamping of RTK based GPS time-stamps are in the process 
of being integrated into both UAV systems, which will 
improve the capacity for more accurate mosaicking. An 
inflight temperature regulation system is also being 
developed to reduce anomalous sensor response. 
Regardless, the image presents an excellent example of the 
high-resolution (approximately 20 cm) thermal data that can 
be obtained from these UAV platforms. Further work will 
explore the synergies between the VNIR and thermal 
domains and exploit these for improving our understanding 
of crop water and energy balances, particularly as relates to precision agricultural applications.  

5. SUMMARY AND CONCLUSIONS 

Unmanned aerial vehicles offer an exciting approach to explore high-resolution detail on hydrological and 
agricultural processes in ways not available from conventional satellite or airborne systems. Furthermore, 
they are able to do this at an affordable entry point and are more compelling from both an economic and 
scientific perspective than expensive airborne campaigns or commercial satellite products. With an 
increasing range of thermal, multi- and hyper-spectral sensors available for UAV based operation, the 
research avenues that can be investigated with such systems is rapidly expanding. From an agricultural 
perspective, retrieving key characteristics on vegetation health and condition, as well as determining water 
use on a near real-time basis, offer the potential for significant development and growth in active crop 
management and precision agriculture applications.  

Figure 4. Thermal retrieval from the fixed wing 
UAV over an alfalfa field using the Optis-Pi450.
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While the potential of UAVs for advancing knowledge of Earth system processes is considerable, community 
uptake has been hindered by a manufacturing focus on hardware developments, rather than on streamlining 
data processing chains to deliver useable products (Shahbazi et al., 2014; Zhang and Kovacs, 2012). Indeed, 
the applications science is in a state of playing catch-up to the rapid developments in technology. 
Furthermore, from a user perspective, there is still a considerable gap between being able to deploy these 
systems and then being able to make best use of the data they collect. For instance, while the flight 
technology is well advanced and the instrument capabilities are expanding, the integration of sensors 
retrievals with accurate space-time mapping of the surface is non-trivial. Issues of geolocational accuracy, 
image distortion, as well as radiometric and atmospheric correction complicate the production of variables of 
interest. Developing within field calibration approaches for the spectral and thermal data is key to ensuring 
retrieval accuracy, as are techniques for providing greater positional accuracy of mosaicked products. With 
rapidly expanding community uptake, such issues are being addressed via the development of improved post-
processing software and calibration approaches. Undoubtedly, UAVs are set to revolutionize the Earth 
observation community and open up new lines of research in the Earth and environmental sciences.   
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