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Abstract: Weeds are patchy, and these patches can be dynamic. A model of weed population dynamics and 
herbicide resistance evolution that includes a spatial component can allow for more realistic modelling of 
important spatial heterogeneity. Local variability in genetic mutations and frequencies and density/yield 
interactions, and the stochastic nature of genetic drift and migration can be included. This can lead to new 
insights and understanding and an increase in grower and researcher confidence in model predictions. 

One useful way to increase the transparency, accuracy and usefulness of an herbicide resistance model is 
through increasing the realism whereby biological processes are represented in the model. To model plant 
interactions occurring uniformly across a whole field of weeds is unrealistic; biological interactions and 
dispersal are typically local scale, likely causing the patches of weeds that occur in fields. The aim here was 
therefore to include a spatial component in an existing model by dividing a single homogeneous population 
into many individual sub-populations in areas defined as ̀ sections’. This allowed us to incorporate both natural 
and anthropogenic pollen and seed spread within and between sections into the new SOMER model (Spatially 
Orientated Model of Evolutionary Resistance). 

This new spatial model was developed by dividing a single homogenous population into many smaller sub-
populations. These sub-populations were spread to cover the central area (1.1664 ha) of a larger homogeneous 
field. Pollen and seed spread between sub-populations (and pollen from further afield) was added each year to 
simulate realistic conditions. This new SOMER model was then compared with an identically parameterized 
non-spatial model of a single homogeneous population of the same size (1.1664 ha). 

The spatial model has already provided new insights. For example, earlier non-spatial models predict that the 
number of resistant weeds in a field typically increases by a constant factor each year, at least until densities 
become high. However preliminary results from this spatial model indicate that resistance builds up more 
slowly when spatial factors are accounted for, due the need for the resistance genes to spread through the 
population. Additional studies evaluating the importance of pollen dispersal and the movement of seed by 
machinery are currently being examined. 
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1. INTRODUCTION 

Today’s farming industry faces the serious issue of declining weed control due to evolved resistance to 
herbicides. Many methods have been proposed to delay the build-up of herbicide resistance, such as changing 
fertilizer rates or annual rotation  strategies (Norsworthy et al., 2012), and new discoveries are extending 
farmers’ options. However despite researchers’ best efforts, farmers are often slow to adopt new strategies and 
many farmers are not using best practice (Walsh, Newman, & Powles, 2013). Difficulties in choosing strategies 
to implement on their farm are compounded by lack of situation-specific knowledge of the relative benefits of 
different strategies; the most effective combinations of strategies will most likely vary between different 
farming situations. Long-term multi-faceted field trials are slow, site-specific and expensive. 
 
To compound these difficulties agriculturalists are sometimes reluctant to invest in new non-herbicide 
strategies. Many farmers are simply waiting for new herbicides to be developed, and in addition farmers have 
concerns that costly efforts to control herbicide resistance build-up within their farms may be thwarted by 
movement onto the farm of resistant seed and/or pollen from neighbouring farms, despite some evidence to the 
contrary (Malone, Boutsalis, Baker, & Preston, 2014). Patches of herbicide resistant weeds on individual farms 
can develop very quickly, and the specific source of resistant weeds is seldom known. 
 
Spatial modelling is predicted to give timely, more realistic results. In addition these more realistic results will 
allow better visualization with an aim of increasing understanding by both non-modelling researchers and 
farmers of the importance of targeting best practices to minimize the build-up of herbicide resistance, and the 
accompanying increase in weed numbers. 

2. MODEL DYNAMICS OVERVIEW 

This study compares two simulations of the evolution of herbicide resistance in an annual weed growing in a 
typical winter cropping program in a Mediterranean-type climate. A new Spatially Orientated Model of 
Evolutionary Resistance (SOMER) model was compared to a simpler homogeneous model using identical 
population parameters. These two models both represent single gene resistance, while incorporating features 
from the existing “Polygenic Evolution of Resistance To Herbicides” (PERTH) model  (Renton, 2009; Renton 
et al., 2011). The models are implemented in the ‘R’ language (R Core Team, 2014). Calculations of 
competition, seed production and seed genotype were conducted stochastically for each year of the simulations. 
These calculations were carried out for each genotype, with the equations used sourced from Renton et al. 
(2011).  
 
In the SOMER model the central 1.17 ha area was split into one-metre square sections, each containing a 
separate sub-population. These sub-populations were modelled separately each year, except at pollination and 
seed-fall, when mixing of 
genetic material through 
seed and pollen dispersal 
occurred between sub-
populations. Squares were 
chosen as the best section 
shape as they align with 
activities such as seeding 
and harvest. The 
movement of pollen and 
seed between these sub-
populations in the 
SOMER model is 
illustrated by the dotted 
lines in Figure 1, whereas 
the simpler homogenous 
model it is compared to 
does not include this 
interaction. 

Figure 1. Representation of the lifecycle of managed L. rigidum weeds 
growing in a Western Australian wheat crop and modelled in both the non-

spatial and SOMER models. 
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3. PARAMETRIZATION 

The simulations in this study were based on a single well-studied weed species, annual ryegrass 
(Lolium rigidum), within a wheat crop (Tritium spp).  Annual ryegrass (L. rigidum) is a widespread obligate-
outcrossing and genetically diverse species, with the majority of populations in Western Australia containing 
some level of herbicide resistance to many ACCase- and AHAS-inhibiting herbicides (Boutsalis, Gill, & 
Preston, 2012; Llewellyn, D'Emden, Owen, & Powles, 2009; Owen, Martinez, & Powles, 2014). Parameters 
used are based on RIM (Lacoste & Powles, 2014) and PERTH (Renton, 2011) (Table 1). Unverified parameters 
were calibrated by adjusting within biologically reasonable limits (Lacoste & Powles, 2014; Renton, 2011)  to 
give realistic annual weed numbers at harvest over time, in the absence of resistance. The density and species 
of crop, and the type of weed will affect the distance of weed seed spread (Humston, Mortensen, & Bjornstad, 
2005), making the specific estimations used here both weed and crop specific. However, we expect the general 
conclusions should be more far-reaching. 
  

3.1. Maximum L. rigidum density 

The maximum density of L. rigidum per section was set at 3000 full size equivalent adult plants per metre 
square. Density in subsequent generations was limited when weed numbers exceeded 3000m-2 by lowering the 
fitness of weeds in the later emerging cohorts to one percent of its initial value. Due to the stochastic nature of 
seed production (Renton, 2009) this insured that stochastic population numbers per section were maintained. 
  

4. SPATIAL COMPONENTS 

The 1.1664 hectare area and its simulated population were divided into sub-populations contained within 
sections, with each sub-population assigned to a specific section. The calculations of weed and crop 
competition, seed production and seed genotype were carried out for each sub-population in the SOMER 
model; for each genotype, identically to in the non-spatial model.  
The spatial model also included weed pollen and seed spread sub-models, enable us to address our specific 
research question on the effects of adding spatial realism to an evolutionary weed resistance population model. 
In the SOMER simulation model, pollen and seed spread rates declined with distance from the source. A larger 
environment, outside the spatially modelled 1.17 hectare area, but still part of the wheat field, was included 

Table 1. Parameter values used in the model runs in this study 
Parameter Explanation Value (s) Source 

area Simulated population area 1.1664 ha a 
den0  Initial ryegrass seedbank density 125 m-2 a, d 
iaf Initial resistance allele frequency  5.00e-5 a 
dom  Dominance for resistance 1 c 
ng  Number of genes for resistance 1  c 
u Probability of mutation causing gain in resistance 1.00e-7 c 
v Probability of mutation causing loss of resistance 1.00e-7 c 
sowing death Probability of weeds killed by mechanics of crop sowing. 0.05 b 
winter death Probability of growing season death of ungerminated seeds 0.10 b 
summer death Probability of between-season seed death 0.25 b 
germination Probability of annual seed germination from seedbank 0.80 b 
kr[1] Probability of kill for knockdown on cohort 1 0.99 b 
kr[2]  Probability of kill for pre-emergent on cohorts 2 and 3 0.95 b 
kr[3] Probability of kill for post-emergent on cohorts 1, 2, 3 and 4 0.95 b 
dc  Wheat sowing density 150 m-2 a 
kc  Crop size/competitiveness parameter 0.09 b 
kw  Weed size/competitiveness parameter for cohort 1 0.03 b 
kw Weed size/competitiveness decreased for later cohorts 0.03 x  

(0.45-0.02) 
b 

SSmax  Maximum weed seed production per metre 35,000 m-2 d 
Imported seeds Seeds joining the seedbank 0.1/m/yr a 

a Renton, Diggle, Manalil, and Powles (2011) 
b Lacoste and Powles (2014)  
c Powles and Yu (2010) 
d Lacoste (2014) 
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into the SOMER pollen spread sub-model by extending the area available to source pollen beyond the defined 
1.17 ha area. The aim was to ensure that every sub-population (including those near the edge of the 1.17 ha 
study area) had access to similar pollen levels. This larger area was incorporated into the spatial sub-model of 
pollen flow based on distance from the home section, with the assumption that weeds in the un-modelled areas 
were homozygous susceptible and occurred in similar densities (to the investigated area) across a wider (un-
modelled) area of field. 

4.1. Spatial pollen spread sub-model 

The decline in pollination probability due to distance from the source was based on data from Knowles and 
Ghosh (1968). An analysis was conducted on their data of the seed percentages and the location of each of the 
local and external plants in the two neighbouring plots (1440 plants in a 45 by 16 yd. area). A Weibull model 
gave the best fit to the data (error =0.002), and yielded the followed equation. 
ݏ݀݁݁ݏ	݀݁ݏ݈݅݅ݐݎ݂݁	ݕ݈݈ܽܿ݋݈	ݐ݊݁ܿݎ݁݌	݁݃ܽݎ݁ݒܽ  = ∑ ୅ିୈ	௘ష೐೗	೏೔ೞ೟ೌ೙೎೐೔೛	ళమబ೔సభ∑ ୅ିୈ	௘ష೐೗	೏೔ೞ೟ೌ೙೎೐೔೛	భరయవ೔సభ 	                                    (1) 

 

After the data in Knowles and Ghosh (1968) was adjusted  to remove 8% self fertilised seeds, the parameters 
were: Asymptote (A=0), Drop (D=-1), Natural logarithm (l=1.9304) and Power (p=0.2294). These 
parameters were then used to yield the pollination probabilities for each plant, based on the distance between 
each home section and the pollen source sections. 
ݐ݈݊ܽ݌	ݎ݁݌	݊݋݅ݐݎ݋݌݋ݎ݌	݈݈݊݁݋݌  = 																		 ௘ష೐೗	(೏೔ೞ೟ೌ೙೎೐బ.వభయల )೔೛∑ ௘ష೐೗	(೏೔ೞ೟ೌ೙೎೐బ.వభయల )೔೛	భభలలర೔సభ 	                                           (2) 

 

These results are explained graphically in Figure 2. 

A larger environment, outside the spatially modelled 1.1664 hectare area, but still part of the wheat field, was 
included into the SOMER pollen spread sub-model by extending the area available to source pollen beyond 
the defined 1.17 ha area. The aim was to ensure that every section (including those near the edge of the 1.1664 
ha study area) had access to similar pollen levels. This larger area was incorporated into the spatial sub-model 
of pollen flow based on distance from the home section, with the assumption that weeds in the un-modelled 
areas were homozygous susceptible and occurred in similar densities (to the investigated area) across a wider 
(un-modelled) area of field. 

 

Figure 2. Fitting a fat-tailed Weibull curve to individual plant pollen spread data in Knowles and Ghosh 
(1968). The Weibull curve in figure A is constructed using a best-fit parameter estimation for the 

distances to each pollen producing plant in the test area (Equation1). The parameters calculated in figure 
2A are then used to calculate the pollen proportion for individual plants in figure 2B. 
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4.2. Seed dispersal into adjoining sections 

Wind, insects and farming activities were assumed to spread weed seeds radially from each sub-population 
into sub-populations in surrounding sections. The dispersal calculations therefore reflected inter-section seed 
spread by all methods; from spring weed seed shed until autumn germination. This type of seed spread is 
assumed to be small due to trash left by commonly used conservative harvest methods, (Aguiar & Sala, 1997; 
Fenner, 1985) and is therefore confined to the eight sections immediately surrounding the source sub-
population (Blanco-Moreno, Chamorro, Masalles, Recasens, & Sans, 2004; Petit et al., 2013). 

The proportion of a seed dispersing outside the source sub-population’s home section was trailed at both 4% 
and 10% of annual seed production, with 2% of this seed-loss directed into each corner section, and the 
remaining 92% into the four immediately adjacent sections. Header seed spread is assumed not to occur (Table 
2). 
 

5. EVOLUTION OF RESISTANCE 

The model was run-in for 10 years prior to adding a 
single herbicide resistant allele to a weed plant in the 
sub-population in the central section of the SOMER 
model. This run-in was used to establish a 
realistically variable population distribution across 
the 1.17 hectare test area (Blanco-Moreno, 
Chamorro, & Sans, 2006). The average weed density 
for the entire area was maintained at 125 weeds m-2, 
however by year 10 there was a density range from 
1:1000 m-2 with weak development of patches 
(Figure 3). A single resistant allele was also added to 
the non-spatially modelled population at year 11. 
 
A field size of 1.17 hectare (108m by 108m) was selected as large enough to incorporate the significant annual 
spread of L. rigidum pollen and seeds. An area slightly larger than one hectare was chosen to allow a header 
width of 12m to be incorporated into later simulations. 
 
 

6. RESULTS 

Incorporating a spatial constraint into 
resistance modelling slowed the build-
up of herbicide resistance. In the non-
spatial model numbers of resistant 
weeds increased from 10 per hectare to 
100 per hectare in just one year. In 
comparison the SOMER spatial model 
with 10% annual seed dispersal took 3 
years to increase average weed numbers 
from 10 per hectare to 100 per hectare 
(Figure 4). A drop in seed dispersal rates 
from 10% to 4% resulted in a further 
delay in resistance evolution, when it 
took four years for average weed 
numbers to increase from 10 per hectare 
to 100 per hectare.  

Realistic depictions of resistance spread 
across a field were also generated 
(Figure 5). 
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Figure 4. The solid lines in this diagram show the total number of 
weeds /ha estimated by each of three models on a log scale. The 

dashed lines show the number of herbicide resistant weeds in each 
simulation. 

Figure 3. Changes in weed numbers per section 
during the run in period. 
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7. DISCUSSION 

All three models started with the same level of herbicide resistance, in the same sized field. Numbers of weeds 
increased much more rapidly in the non-spatial model where numbers of resistant weeds followed an 
exponential growth curve (linear on the log scale). This meant that one extra year of herbicide control was 
gained for every one tenth reduction in the initial frequency of resistant genes, a result which seems unrealistic 
for some herbicides (Powles & Yu, 2010). In contrast in the SOMER spatial model the increase in numbers of 
resistant weeds was much more gradual (Figure 4), due the earlier spatial constraints on density reducing the 

more rapid increase in weed numbers in 
the non-spatial model. In addition, the 
graphical representations possible with 
this system of modelling produced 
informative graphs; showing growth in 
resistance, as well and changes in weed 
numbers, and visually realistic images of 
increases in weed numbers in the field. 
This may help address the short-term 
management focus of some growers 
(Norsworthy et al., 2012). 
 
Further research could incorporate the use 
of harvest weed seed control, although 
adding the seed spreading actions of a 
harvester may require the modelling of a 
larger area, possibly incorporating larger 
sub-population sizes. In addition as one of 
the two years of data from Knowles and 
Ghosh (1968) contained directional wind 
mediated pollen spread it should be 
possible to incorporate this effect into the 
pollen spread calculations. 

 

 

ACKNOWLEDGEMENTS 

Special thanks to staff and students in the AHRI team at UWA, as well as my fellow modellers in Dr Renton’s 
study group. 

 

REFERENCES 

Aguiar, M. R., & Sala, O. E. (1997). Seed distribution constrains the dynamics of the Patagonian steppe. 
Ecology, 78(1), 93-100.  

Blanco-Moreno, J. M., Chamorro, L., Masalles, R. M., Recasens, J., & Sans, F. X. (2004). Spatial distribution 
of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Research, 44(5), 375-
387. doi:10.1111/j.1365-3180.2004.00412.x 

Blanco-Moreno, J. M., Chamorro, L., & Sans, F. X. (2006). Spatial and temporal patterns of Lolium rigidum–
Avena sterilis mixed populations in a cereal field. Weed Research, 46(3), 207-218.   

Boutsalis, P., Gill, G. S., & Preston, C. (2012). Incidence of herbicide resistance in rigid ryegrass (Lolium 
rigidum) across southeastern Australia. Weed Technology, 26(3), 391-398.  

Fenner, M. (1985). Seed ecology: Springer Science & Business Media. 
Humston, R., Mortensen, D. A., & Bjornstad, O. N. (2005). Anthropogenic forcing on the spatial dynamics of 

an agricultural weed: the case of the common sunflower. Journal of Applied Ecology, 42(5), 863-872. 
doi:10.1111/j.1365-2664.2005.01066.x 

Knowles, R. P., & Ghosh, A. N. (1968). Isolation requirements for smooth bromegrass, Bromus inermis Leyss., 
as determined by a genetic marker. Agronomy Journal, 60(4), 371-374.  

 

Weed 
numbers

Figure 5. Weeds per m2 in each of the sections of the  
wheat field. 

481



Somerville and Renton, Does adding a spatial component to a herbicide resistance population model improve 
understanding and predictions of the build-up of herbicide resistance over time? 

 

Lacoste, M. (2014). RIM 2013: default settings. Retrieved from Australian Herbicide Resistance Initiative & 
School of Agricultural and Resource Economics, The University of Western Australia, Perth.: 
http://www.ahri.uwa.edu.au/files/files/1261_RIM_2013_Default_settings_2014.pdf 

Lacoste, M., & Powles, S. (2014). Upgrading the RIM model for improved support of integrated weed 
management extension efforts in cropping systems. Weed Technology, 28(4), 703-720.  

Llewellyn, R. S., D'Emden, F. H., Owen, M. J., & Powles, S. (2009). Herbicide Resistance in Rigid Ryegrass 
(<i>Lolium rigidum</i>) Has Not Led to Higher Weed Densities in Western Australian Cropping Fields. 
Weed Science, 57(1). doi:10.1614/WS-08-067.1 

Malone, J., Boutsalis, P., Baker, J., & Preston, C. (2014). Distribution of herbicide‐resistant acetyl‐coenzyme 
A carboxylase alleles in Lolium rigidum across grain cropping areas of South Australia. Weed Research, 
54(1), 78-86.  

Morrison, I. N., Nawolsky, K. M., Entz, M. H., & Smith, A. E. (1991). Differences among certified wheat 
seedlots in response to trifluralin. Agronomy Journal, 83(1), 119-123.  

Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., . . . Barrett, M. 
(2012). Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed 
Science, 60, 31-62. doi:10.1614/WS-D-11-00155.1 

Owen, M. J., Martinez, N. J., & Powles, S. B. (2014). Multiple herbicide‐resistant Lolium rigidum (annual 
ryegrass) now dominates across the Western Australian grain belt. Weed Research, 54(3), 314-324.  

Petit, S., Alignier, A., Colbach, N., Joannon, A., Le Coeur, D., & Thenail, C. (2013). Weed dispersal by farming 
at various spatial scales. A review. Agronomy for Sustainable Development, 33(1), 205-217. 
doi:10.1007/s13593-012-0095-8 

Powles, S., & Yu, Q. (2010). Evolution in action: Plants resistant to herbicides. In S. Merchant, W. R. Briggs, 
& D. Ort (Eds.), Annual Review of Plant Biology, Vol 61 (Vol. 61, pp. 317-347). Palo Alto: Annual 
Reviews. 

R Core Team. (2014). R: A language and environment for statistical computing. Retrieved from http://www.R-
project.org/ 

Renton, M. (2009). The weeds fight back: Individual-based simulation of evolution of polygenic resistance to 
herbicides. Paper presented at the 18th World IMACS Congress and MODSIM09 International Congress 
on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand and 
International Association for Mathematics and Computers in Simulation. 

Renton, M. (2011). How much detail and accuracy is required in plant growth sub-models to address questions 
about optimal management strategies in agricultural systems? AoB plants, 2011, plr006-plr006. 
doi:10.1093/aobpla/plr006 

Renton, M., Diggle, A., Manalil, S., & Powles, S. (2011). Does cutting herbicide rates threaten the 
sustainability of weed management in cropping systems? Journal of theoretical biology, 283(1), 14-27.  

Walsh, M., Newman, P., & Powles, S. (2013). Targeting weed seeds in-crop: A new weed control paradigm 
for global agriculture. Weed Technology, 27(3), 431-436. doi:10.1614/WT-D-12-00181.1 

 

482




