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Abstract: Water is a precious and scarce resource, essential for sustaining nature, human life and industry.
Efficient water treatment is recognised as the only method to sustain safe supplies of water in the future. So
far scientific work has focused solely on the performance optimization of individual water purification units
due to overall process complexity. A whole - systems approach in the area will be of a significant benefit to
industry by increasing overall process efficiency and decreasing plant costs.

This work addresses the current gap by considering synthesis of water treatment trains using mixed integer lin-
ear programming (MILP). The model accounts for the most common contaminants found in water, secondary
treated wastewater, seawater or brackish water. Such major pollution indicators are chemical oxygen demand
(COD), biochemical oxygen demand (BOD), total dissolved solids (TDS), total suspended solids (TSS), tur-
bidity and coliforms. The water source is treated to meet potable, process or reclaimed water standards. The set
of candidate steps is selected to reflect the most extensively utilised industrial processes such as coagulation-
flocculation, membrane filtration and UV disinfection at various operating conditions. The overall number
of trains is minimised based on efficiency removal factors and final water purity specifications. The former
takes into account the physicochemical properties of the contaminants and the respective regression models
for rejection or retention of an addressed impurity in a certain candidate.

A particular case of desalination for drinking water supply is studied. The model is tested for the standard level
of contaminants in seawater, TDS and TSS, to be removed by a set of up to 34 candidate trains. For production
of ca. 600 m3/h water the model identifies an optimum solution of overall 6 trains consisting of ultrafiltration
(UF), nanofiltration(NF) and reverse osmosis (RO). The objective function minimised is the annual operating
cost as a function of pumps electricity consumption, membrane cleaning and replacement practices. Overall,
the results obtained agree with the recent trends in industrial desalination process synthesis and hence, the
model can provide a valuable guidance in water purification processes design.
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1 INTRODUCTION

With the view of population reaching 8 billion worldwide by 2025 water demand increases to ensure food,
energy, personal uses and ecosystems supply (United Nations Water (2012)). Current efforts in research ex-
tensively focus on integrated water resources management and design of optimum water treatment processes
to ensure safe and affordable water usage.

In particular, the synthesis of separation processes for industrial applications in preliminary design stage can
have a significant impact on capital investment costs and annual operating costs associated with those pro-
cesses. Therefore, there is an increasing interest in developing systematic and rational methods for optimising
separation components and their interconnections (Nishida et al. (1992)). Such problems have two main ob-
jectives, of finding the nature of the separations and their optimum sequence, and optimum design variables
for every separation method.

Purification of water, secondary treated wastewater, seawater and brackish water processes exhibit similarities
with regard to the equipment that performs the separation. Hence, a general model can be built for different
water sources and end users including a pool of various separation technologies that can be selected appropri-
ately in order to achieve the final specifications.Tchobanoglous et al. (2003) discusses the removal of organic
and inorganic colloidal, suspended and dissolved solids in water and secondary wastewater effluents, and the
employed unit operations such as coagulation - flocculation, filtration, membrane filtration, ion exchange. Re-
cently the spotlight in separation technology has shifted from conventional to non-conventional equipment. In
particular pressure-driven membrane processes are preferred because of their efficiency and no need of fluid
phase change (Chan and Tsao (2003)). In addition, seawater desalination by membrane processes such as
nanofiltration, reverse osmosis and electrodialysis finds extensive recognition worldwide (Lior (2013)).

Numerous simulations, lab-based, pilot plant and industrial scale experiments have been performed in regres-
sion analyses by modelling and optimization of technologies performance such as coagulation - flocculation
(Khayet et al. (2010)), carbon adsorption (Barkat et al. (2009)), microfiltration (Benitez et al. (2006)), ultra-
filtration (Muthukumaran et al. (2010)), micellar-enhanced ultrafiltration (Landaburu-Aguirre et al. (2013)),
nanofiltration (Boussu et al. (2008)), reverse osmosis (Khayet et al. (2010)), forward osmosis (Fang et al.
(2013)), membrane distillation (Khayet et al. (2010)), ultraviolet treatment (Hijnen et al. (2005)). Economic
appraisal of systems as an essential part of optimization has been discussed in various publications. For in-
stance, Pickering and Wiesner (1993) proposed a cost model for low pressure membrane filtration, Lu et al.
(2006) suggested an MINLP cost model for RO systems in desalination processes, Tsiakis and Papageorgiou
(2005) considered optimal cost effective design of electrodialysis desalination plants. Research has also fo-
cused on MINLP modelling for water network synthesis (Tokos and Pintarich (2009),Khor et al. (2012)). Yet
optimal synthesis of water purification processes has not been thoroughly explored.

In the present work a whole - system approach for the preliminary design of water treatment flowsheet is
proposed with seawater desalination for production of potable water as a final product. Lastly, the results from
the MILP model are discussed together with the computational performance.

2 PROBLEM DEFINITION

The mathematical representation of the problem to be solved is summarised below and has a particular focus
on seawater desalination.

Given:

• a set of contaminants (i : 1, 2, ..., I)

• a set of technologies (t : 1, 2, ..., T )

• parameters: pressures (Pt), recoveries (Yt) and efficiencies (ηFPt)

• continuous variables: contaminants concentrations ci,t, flowrates Qt, operating pump costs FPt, mem-
brane cleaning costs CCt and membrane replacement costs RCt

Determine:

• process flowsheet and minimal annual operating cost (OP )

The model assumes that no recycling is taking place, and one - stage and one - pass membrane configurations.
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3 PURIFICATION EFFICIENCY

For any separation process contaminant removal efficiency to meet a given design purity specification, clas-
sifies as an essential performance criterion. Therefore, a core technological efficiency parameter in seawater
desalination is the removal of major indicators such as TDS and TSS (Acton (2013)). Since the focus of the
study is primarily on the pre-treatment and desalination sections, a reasonable starting point is to consider
those major contaminant groups.

The removal efficiency of downstream water purification processes can be measured by removal, rejection,
retention or deactivation coefficients as functions of the contaminants’ physicochemical properties (Pi,t) (1)
such as molecular weight and hydrophobicity, feed temperature, pressure and concentration, technology char-
acteristics, etc (Benjamin and D.F.Lawler (2013), Scott and Hughes (1996), Xu et al. (2005)). It can take
values between 0 and 1 as the former refers to no separation from contaminant and the latter refers to 100%
separation achieved.

Ri,t = f(Pi,t) = 1− cp
cf
, ∀i, t (1)

In equation (1), cp ( mg/L) is the contaminant concentration in the permeate and cf (mg/L) is the contam-
inant concentration in the feed. Each technique is associated with the rejection of an individual or multiple
contaminants. It is assumed that a particular technique removes insignificant amounts of other, untargeted by
the technique, contaminants and that in the presence of those contaminants in a mixture with targeted contam-
inants, the rejection coefficients still fairly accurately predict the removal efficiency of the targeted pollutants.
The removal efficiency is represented in the form of regression models based on ANOVA analysis for each of
the considered techniques in the current case study. The rest of the models are available in published literature
(Khayet et al. (2010), Barkat et al. (2009), Landaburu-Aguirre et al. (2013), Khayet et al. (2010), Fang et al.
(2013), Khayet et al. (2010), Hijnen et al. (2005)).

The separation efficiency of COD and colour from water by microfiltration (MF) is shown in equation (2)
based on experimental work (Benitez et al. (2006)):

Ri,t = 0.126 + 0.001 ·T + 0.097 ·TMP, ∀t ∈MF (2)

where T (◦C) and TMP (MPa) is the transmembrane pressure. For removal of turbidity by ultrafiltration
(UF), equation (3) holds (Muthukumaran et al. (2010)) and the rejection is expressed as a function of the
transmembrane pressure.

Ri,t = 0.959− 1.510 ·TMP, ∀t ∈ UF (3)

It has been reported that turbidity and total suspended solids are roughly related (Gallegos (1993)). Hence,
equation 3 can give an approximate estimation of suspended solids removal in seawater. The performance
characteristics of nanofiltration membranes are affected by solute properties, solution pH and membrane char-
acteristics such as pore size, hydrophobicity and surface roughness (Artug (2007)). Since seawater contains a
large amount of dissolved organic matter (Duursma and Dawson (1981)), the retention of dissolved uncharged
organic compounds, for nanofiltration (NF) can be approximated using contaminants hydrophobicity (H) and
molecular weight cut - off (MWCO) (Boussu et al. (2008)):

Ri,t = 0.01 · (5.730− 0.710 · log(H)− 0.002 ·MWCO)2, ∀t ∈ NF (4)

Seawater desalination reverse osmosis (RO) rejection coefficient for salt is represented in equation (5) as a
function of the pressure (Chen and Guanghua (2005)):

Ri,t = 0.01 · (89 + 34 ·P − 0.3 ·P 2), ∀t ∈ RO (5)

The TDS of interest in equation 5 are composed of K, Na, Mg, Ca, Ba, Sr, CO3, HCO3, NO3, Cl, F ,
SO4 and NH4.

4 MATHEMATICAL MODEL

The mathematical optimization model for the case study is presented in the following section.
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4.1 Concentrations constraints

The concentration of pollutant, i, after the first step is calculated by equation (6a). When a technique, t, is
selected, the binary variable, Et = 1, and the contaminant is reduced from an initial concentration of c1 based
on equation (1). Equation (6c) shows the interconnection between two potential candidates and equations (6d)
and (6e) are disjunctions used to maintain the linearity of the model. A similar formulation is implemented in
previous works for biochemical processes (Vasquez-Alvarez and Pinto (2004), Polykarpou et al. (2012)).

cpi,t
= Et · c1 · (1−Ri,t) + (1− Et) · c1, ∀t = 1, i (6a)

cpi,t
= c

′

fi,t · (1−Ri,t) + c
′′

fi,t , ∀t > 1, i (6b)

cpi,t−1
= c

′

fi,t + c
′′

fi,t , ∀t > 1, i (6c)

c
′

fi,t ≤ Et · c1, ∀t > 1, i (6d)

c
′′

fi,t ≤ (1− Et) · c1, ∀t > 1, i (6e)

In the set above, cpi,t
(mg/L) is the pollutant concentration in the permeate, c

′

fi,t
(mg/L) is the contaminant

concentration in feed provided a candidate is selected and c
′′

fi,t
(mg/L) is the contaminant concentration when

a candidate is not selected.

4.2 Flowrates constraints

The permeate flowrate, Qp, is calculated using (7b). When a candidate is selected, the flowrate is reduced to
Qf ·Yt based on system recovery, Y , otherwise it takes the value of the feed. The first equation from (7) gives
the initial mass balances starting from initial flowrate, Q1 and every subsequent one is calculated from (7b).

Qpt = Et ·Q1 ·Yt + (1− Et) ·Q1, ∀t = 1 (7a)

Qpt = Q
′

ft ·Yt +Q
′′

ft , ∀t > 1 (7b)

Qpt−1
= Q

′

ft +Q
′′

ft , ∀t > 1 (7c)

Q
′

ft ≤ Et ·Q1, ∀t > 1 (7d)

Q
′′

ft ≤ (1− Et) ·Q1, ∀t > 1 (7e)

To express the relation between the candidate trains, equation (7c) is inserted. For instance, provided a train is
selected, the permeate from the previous train becomes the feed of the candidate of interest.

4.3 Operating costs constraints

The operating costs for the feed pumps FPt are expressed in the following set of equations where bilinear
tranformation was performed to linearize equation 8a:

FPt =
a ·Ce ·wt ·PFPt

ηFPt

, ∀t (8a)

ωt ≤ Et ·Q1, ∀t > 1 (8b)
ωt ≤ Qft + Et ·Q1, ∀t > 1 (8c)
ωt ≥ Qft − Et ·Q1, ∀t > 1 (8d)

where ωt is a bilinear variable, a is a constant, ηFPt is the efficiency of the feed pump prior to a train, and
Ce is the electricity charge and has a value of 0.08 USD/kWh to account for any future increments from the
U.S. Energy Information Administration (2013) review and to comply with literature values (Lu et al. (2006)).
The maintenance costs are calculated from membrane cleaning (CCt) costs in (9) and membrane replacement
costs (RCt) in (10):

CCt = b ·Et ·Co ·Nu ·Ccm, ∀t (9)

RCt =
Et ·Co ·Nu ·Cm

c
, ∀t (10)
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where b and c are constants, Co (USD) is the operating cost charge rate during maintenance, Cm (USD) is
the membrane replacement cost per module and Ccm (USD) is the fixed cost for downtime (Lu et al. (2006)).
It is assumed that cleaning or replacement takes place simultaneously for all trains, there are no pressure
losses from pump to membrain train, every train contains the same number of membrane modules Nu = 360,
cleaning is performed every 6 months, replacement is recommended every 5 years, and the annual operation
is 300 days a year.

4.4 Target water purity constraints

The final water purity should not exceed the conditions imposed by the following constraint:

PSi,t ≤Mi, ∀i, ∀t = T (11)

where Mi is a maximum allowable concentration of a contaminant in mg/L. According to the World Health
Organization (2011), potable water of good quality contains less than ca. 600 mg/L. No explicit limits for
TSS exist in the Drinking Water Quality Guidelines. However, turbidity should be no more than 1 NTU but in
practice, it is recommended to achieve less than 0.5 NTU. The relationship between turbidity and TSS given
by Gallegos (1993) provides a rough estimate of the maximum allowable TSS concentrations which is 1.34
mg/L. Thus, the final purity specifications used in the model are less than 100 mg/L TDS and less than 1
mg/L TSS.

4.5 Objective function

The objective function of minimizing the annual operating cost (OP) is a sum of the pumps running costs (PC),
membrane cleaning costs (CC) and membrane replacement costs (RC) for all the selected technologies.

OP =
∑
t

(PCt + CCt +RCt), ∀t (12)

5 RESULTS

The model for the case study was tested on GAMS 23.9 (Rosenthal (2012)). The solver used was CPLEX on
a Dell PC OptiPlex 9010 Core i5-3570 at 3.4 GHz and 3.89 GB RAM.

5.1 Case study: Seawater Desalination

In total there were 36 candidates - 9 MF, 5 UF, 9 NF and 11 RO trains. The initial flowrate was 5500 m3/h.

Table 1. Desalination MILP model input

Technology Pressure Temperature Hydrophobicity Molecular weight cut-off Recovery Pump efficiency
[MPa] [◦C] [−] [Da] [−] [−]

MF 0.1 - 0.2 20 - 55 - - 0.95 0.80
UF 0.1 - 0.3 - - - 0.90 0.75
NF 0.5 - 1.5 - 0.002 - 1 300 - 1200 0.60 0.85
RO 5.0 - 6.0 - - - 0.40 0.75

Source: Lu et al. (2006)
Figure 1 represents the soluton of the MILP model as UF1, UF2 and UF3 operate respectively at 0.10, 0.15
and 0.20 MPa, NF1 and NF2 at hydrophobicity of the components 0.002 and 0.01 at pH7, respectively, and
MWCO 300 Da, and RO1 at 5.0 MPa. The final flowrate was estimated at 577 m3/h with 15.8 mg/L TDS
and 0.528mg/L TSS. For a given option of train re-selection, the model chooses MF1, operating at 0.1MPa,
two times UF1, operating at 0.1 MPa, two times NF1 at 0.6 MPa and one time NF2 at 0.6 MPa.

Figure 1. Optimal flowsheet for seawater desalination with option of no train re-selection
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The annual running and maintenance cost returned by the solver was 2,913,471.5 USD, approximately 2
times higher than when the train re-selection option was used. In total, the model had 34 discrete variables,
437 continuous variables, and 637 single equations. It took CPLEX a total CPU time 3.77 seconds to return
a solution for the no re-selection option and 230.96 seconds for the re-selection option. Majority of the
current desalination plants use UF and NF as a pre-treatment to RO (DesalData (2013)). Therefore, the results
generally agree with available industrial data.

6 CONCLUSIONS

In the present work, an optimization for the synthesis of water purification processes was presented. The
mathematical problem for minimizing the annual operating cost was formulated as an MILP model and was
solved for a case study of seawater desalination to meet potable water standards. The solution consists of
the process flowsheet along with operating conditions, and an optimum integer solution was obtained. The
selected trains demonstrated efficiency parameters with lower pressures, temperatures, hydrophobicity and
molecular weight cut - off values in order to both meet the purity and costs constraints. The findings are
consistent with literature as such operating and technology conditions result in higher rejection coefficients
and require less energy consumption. In early design stages this model would be of a great benefit to estimate
the most economically-wise flowsheet configurations.

A future extention of this work will involve expanding the pool of technologies for the presented case study,
including conventional and emerging technologies. Furthermore, modelling fluxes to enable accurate deter-
mination of trains capacities, membrane fouling and cleaning will be another aspect for future work. Finally,
envrionmental impacts on the flowsheet configuration are yet to be addressed.
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