
Data Driven Statistical Model for Manganese 
Concentration Prediction in Drinking Water Reservoirs  

E. Bertonea, R.A. Stewarta, H. Zhanga and K. O’Halloranb 

a Griffith School of Engineering, Griffith University Gold Coast campus, Queensland 
b Scientific Services and Data Systems, Seqwater, Brisbane, Queensland 

Email: edoardo.bertone@griffithuni.edu.au 

Abstract: Continuously monitoring and managing manganese (Mn) concentrations in drinking water 
supply reservoirs are paramount for water suppliers, as high concentrations create discoloration of potable 
water supplied to the customers. Traditional Mn management approaches typically involve manual sampling 
and laboratory testing of raw water from supply reservoirs on a regular basis (typically weekly) and then 
treatment decisions are made based on the soluble Mn level exceeding an allowable threshold level; for the 
reservoir in this study the threshold level for treatment is 0.02 mg/L. Often Mn testing is conducted all year, 
but in the sub-tropical regions, such as the Gold Coast, Australia, where the reservoir of interest for this study 
(Hinze Dam) is located, high Mn concentrations only occur for a brief period during the dam destratification 
process which occurs at the beginning of winter. High concentrations of Mn, resulting from the 
destratification event, in water entering the water treatment plant are usually treated through pre filter 
chlorination for concentrations < 0.18 mg/L, or with addition of potassium permanganate for higher 
concentrations. 

Recently, a vertical profiling system (VPS) has enabled the data collection of many water parameters, such as 
water temperature, dissolved oxygen, pH, conductivity and redox potential every 3 hours. Despite the 
abundance of physical and water quality data collected by the VPS, it cannot directly measure a range of 
water quality parameters such as Mn, thus manual sampling and testing are still required.  

Since previous studies have shown significant links between the physicochemical parameters collected by 
VPS and Mn concentrations, a data driven model can be developed to predict Mn values accurately. A 
Multiple Linear Regression (MLR) with empirical equations for Hinze dam was trained using data from 2008 
to 2011, and tested with an independent dataset from 2012. The model was able to predict one week ahead 
the average Mn concentration in the epilimnion, where the water is drawn, with a correlation coefficient 
higher than 0.83. The output is also displayed in form of probabilities of exceeding certain thresholds, for 
instance 0.02 mg/L (namely Mn treatment needed).  

Successfully achieving the development of an autonomous and accurate tool for the data mining of VPS 
parameter datasets to predict levels of Mn provides several benefits for treatment operators: such a decision 
support system (DSS) would significantly reduce laboratory costs while concurrently enhancing treatment 
adaption response times.  
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1. INTRODUCTION 

High manganese (Mn) concentrations are a widespread water quality issue impacting water utilities. In 
subtropical reservoirs such as Hinze dam, location of this study, soluble Mn is usually present in small 
amounts in the surface waters, where the water is typically drawn for human uses; however in winter, 
because of the lake turnover, its level sharply increases and the water treatment plant operators face the 
challenge of determining the appropriate quantity of oxidizer to be used. Utilities unable to complete the 
timely and appropriate level of treatment requirements for excess Mn concentrations could be passing this 
water through to consumers, potentially leading to water colour and odour issues.  

Therefore, they are requested to set up efficient, reliable, practical and safe methods to predict and, when 
necessary, reduce high levels of Mn for potable purposes. Traditionally, operators rely on manual sampling 
of the water; nevertheless, in recent years the use of vertical profiling systems (VPS) to detect real-time 
values of a range of water quality and environmental parameters such as pH, redox potential or dissolved 
oxygen (DO) has enhanced the opportunity for a constant monitoring of variables of interest for the water 
supply operator. Unfortunately, Mn detection still currently relies on manual weekly sampling, because the 
VPS are unable to measure this chemical parameter.  

Since many prior studies have proven the existence of correlations between some of the aforementioned 
parameters and other laboratory tested ones (such as Mn), there is an opportunity for an autonomous and 
intelligent tool to be developed that is able to predict future values of Mn with a high degree of accuracy, 
thereby reducing laboratory testing requirements and associated costs as well as improving operator decision 
making. 

This paper firstly provides a background for the key issues related to the research study, followed by a 
description of the research methods applied for designing and building the Mn prediction model. Next, the 
model prediction accuracy (7 days ahead) is tested for the 2012 critical winter lake turnover period and its 
performance discussed. Finally, a discussion and study conclusions are provided. 

2. BACKGROUND 

2.1. The manganese cycle in a lake 

The total Mn load into a lake or reservoir is not constant over time, but it depends on many internal and 
external factors; besides, it is typically very different between the surface waters (i.e. the epilimnion) and the 
deep bottom waters (i.e. the hypolimnion).  The epilimnion is usually warmer and richer in oxygen than the 
hypolimnion, because of the solar radiation that, particularly during summer, determines water heating and 
photosynthesis. The presence of algae and photosynthesis usually means a higher pH too (because of the 
removal of CO2 forms such as HCO3

-, which is acidic). Since with high pH and redox potential values the 
soluble divalent Mn is unstable (Hem, 1963), this is oxidised into more complex insoluble compounds that 
precipitate into the hypolimnion. Hence, the Mn concentration in the epilimnion is usually low: this is one of 
the reasons why the water to be directed to the treatment plant is typically drawn from this layer, since the 
concentration of nutrients is usually low thereby reducing the degree of water treatment processing required. 
In the hypolimnion, the radiation cannot penetrate and the photosynthesis does not occur: the much lower 
levels of DO (Tundisi and Matsumura, 2011) in these waters is used by respiration of bacteria, which also 
contribute to lowering the pH with acidic reactions such as denitrification; this reducing environment 
(Calmano et al., 1993) along with the anoxic conditions (Chiswell and Huang, 2003) makes the soluble 
divalent Mn the most stable Mn form and a reduction of the insoluble Mn, coming mainly from the bottom 
sediments (Dojlido and Best, 1993) occurs. The Mn can diffuse around the hypolimnion, but it usually cannot 
reach the epilimnion, since its warmer, less dense waters are hardly mixed with the cooler hypolimnetic ones. 
Nevertheless, sometimes during the year the stratification is broken and lake circulation occurs. For warm 
monomictic lakes such as Hinze dam, this happens once per year during winter, when the solar radiation is 
weaker and the epilimnion becomes cooler: gradually the thermal gradient gets smaller and smaller until 
winds are able to apply the shear needed for mixing the whole water column (Tundisi and Matsumura, 2011). 
Lake circulation leads to an even distribution of chemical and biological constituents throughout the water 
column, with the top layers enriched in nutrients (e.g. Mn) from the hypolimnion (Nürnberg, 1988). This Mn 
is oxidized and the insoluble Mn precipitates downwards or is washed away with the outflow, but these 
processes are slow, therefore for some days/weeks high epilimnetic soluble Mn concentrations persist. 

Interestingly, few studies have been conducted to try to fully model or even predict the Mn cycle. As pointed 
by Maier et al. (2010), with regards to recently widely applied statistical models such as Artificial Neural 
Networks (ANN), the vast majority of the environmental models deals with water quantity more than water 
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quality issues. Besides, the typical water quality parameters that have been modelled are pH or salinity (e.g. 
Zhang and Stanley, 1997; Bastarache et al., 1997) with few or no studies related to nutrients. An interesting 
model was created by Bowden (2003), which adopted an ANN to predict the peak concentrations of 
cyanobacteria in River Murray, Australia. Process-based models have been widely applied in the 
environmental sector whenever enough data were made available. Nevertheless, to the author’s knowledge, 
attempts of modelling the Mn cycle, with particular regards to the quick transport processes towards the 
epilimnion during the lake destratification, were not present. One of the few studies found in the literature 
was done by Johnson et al. (1991), who created a mathematical, time-dependent model for simulating the Mn 
cycle in a Swiss lake. The model made use of differential equations including all the main processes affecting 
the formation and transport of soluble and particulate Mn, such as eddy diffusion, outflow, flux from the 
sediment, oxidation in the water column and coagulation with subsequent sedimentation. However, the 
equations in this model did not include the mixing in the epilimnion, whose depth changes over the year, thus 
implicitly excluding the winter lake circulation mixing processes. 

2.2. Hinze dam 

Hinze Dam, also known as Advancetown Lake (153.28° E, 28.05° S), supplies most of the water provided to 
Gold Coast City (Queensland, Australia). The dam was originally constructed in 1976 (42,400 ML water 
storage capacity) and was raised in 1989 (161,070 ML). In 2011, the AUD$395 million Stage Three project 
raised the dam wall a further 15 m (from 93.5 to 108 m), doubling the dam’s capacity and providing 
increased water security and flood mitigation.  

Hinze Dam is located 15 km southwest 
of Nerang, immediately downstream of the 
confluence of the Nerang River and Little 
Nerang Creek (Figure 1). The 600 m long dam 
can currently hold 310,730 ML of water across a 
surface area of 9.72 km2, while the catchment 
area covers 207 km2. The raw water is drawn and 
directed to the closest water treatment plant, 
located in Molendinar (about 10 km north-
east).Since Hinze Dam is the major water source 
for the Gold Coast area, which is home to over 
500,000 people, providing adequately treated 
water from this water source is extremely 
important. 

 
 

Figure 1.   Hinze dam location map

Currently, one vertical profiler is collecting data in Hinze dam next to the intake tower. Vertical profilers are 
automatic recording systems that provide a fast, direct and reliable means for analysing the response of a 
reservoir to slow or sudden weather variations (Rouen et al., 2005). A VPS usually consists of one or more 
monitoring stations, used to constantly monitor the weather and the vertical variations of the chemical–
physical parameters of the reservoir; one remote station that receives, analyses and stores the information 
collected by the monitoring stations; and communications tools, used for data transfer (e.g. Wireless). 
However, important parameters for water treatment cannot be provided ‘live’ by the VPS such as Mn, which 
still requires costly and time-consuming manual weekly water samplings and laboratory analysis.

3. RESEARCH METHODS 

3.1. Data collection 

This collaborative project between Griffith University and Seqwater enabled over 12 years of water quality 
and environmental data to be made available. Data utilised to populate the Mn prediction model includes the 
following: 

• Three hourly VPS data for Hinze dam (parameters described in section 2,3) at a location near the water 
intake for the period of 2008-13.  

• Manually sampled and laboratory tested data from the surface to a depth of 24 m for the period of 2000-
2013 including those parameters also provided by the VPS (e.g. water temperature, dissolved oxygen, 
etc.) but also many others such as Mn or Fe.  
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• Daily river inflow data collected from the Queensland Government Department of Energy and Resources 
Management. 

• Daily weather data for the period 2000-2013 provided by the Australian Bureau of Meteorology (BoM). 

The main problem with dealing with such a large and heterogeneous dataset is the variance in the collection 
frequencies of the different parameters. Given this issue, a representative value has been determined for each 
day through a range of techniques (e.g. averaging, interpolation, etc.). It should be noted that daily variations 
in the independent Mn variable have still been maintained in the model.  A study limitation relates to not 
having Mn data below 24 m depth (approx. half of Hinze dam full depth level). Historical full depth Mn 
vertical profile records would have helped to fully explain the complex Mn transport mechanisms occurring 
during the period surrounding lake circulation. In order to partially overcome the aforementioned limitations, 
extra Mn samples were collected during the 2013 lake turnover period. As a consequence, whole water 
column data was collected every 2nd day in the weeks surrounding the critical lake turnover period where Mn 
transportation across the water column is highly dynamic. 

3.2. Data analysis and model choice 

The first step of analysis for the aforementioned data was through visual interpretation through numerous 
time series plots between different variables. This inductive research process was beneficial as it not only 
enabled existing relationships reported in the literature to be confirmed or otherwise, but also revealed other 
unexpected potential relationships. The second step of analysis involved rigorous statistical analysis in order 
to derive the appropriate model input variables. 

Before selecting the most appropriate analysis technique(s) for the model, an extensive review of the 
pertinent literature was performed, focusing on three model categories: statistical models (such as multiple 
linear regression, neural networks, regression tree), probabilistic models (such as Bayesian networks) and 
physical models (using software such as DYRESM or MIKE). The advantages and disadvantages of each 
modelling technique were then assessed and step-by-step testing procedures were followed in order to select 
those technique(s) which were deemed to be the most suitable for this problem. 

3.3. Model validation  

In order to test the performance of a model, the historical data set was divided into a training set, used for 
setting up the model, and an independent testing set. This latter data set was kept separate and only utilised 
after the training process was completed. The testing set will determine the accuracy of the model developed. 
A key requirement of the model was that it had some adaptability in order to take into account the influence 
of future potential changes in environmental conditions that can dramatically affect the equilibrium of the 
lake. Other authors have stated that ”stationarity is dead” (Milly et al., 2008), meaning that future 
environmental models need to be able to learn and adapt to changed circumstances.  

4. RESULTS 

4.1. Identifying model input variables   

As confirmed in the literature, it was noticed how in Hinze dam, critical levels of Mn in the epilimnion are 
reached only during winter turnovers. High inflow events, related to heavy rains, increased the concentrations 
sometimes, but without reaching critical threshold levels.  Table 1 provides a summary of the relevance of 
the main input variables analysed: after plotting the Mn against each possible predictor, the most appropriate 
data transformation (e.g. hyperbolic, exponential) was applied and the correlation coefficient (R) at the most 
relevant lag computed. Also moving averages were considered since they can increase the correlation. Apart 
for the water temperature differential, no variable was found to have a relevant impact in Mn prediction. The 
other nutrient cycles had some common features to the Mn one, but data were available for only two years on 
a monthly interval. DO and pH followed the cycles described in the literature (i.e. alkaline, oxygenated 
epilimnion and acidic, anoxic hypolimnion during stratification) but they were not useful in Mn prediction. 
Turbidity showed peaks after heavy rains, while chlorophyll-a values were higher in the epilimnion; however 
they did not seem to affect the Mn cycle.  

As a consequence, it was noticed how the prediction of critical Mn concentrations is strictly connected to the 
turnover prediction, and a good match between the beginning of the Mn peaks and the attainment of the same 
water temperature throughout the water column was found (Figure 2). Hence, a transformation of the water 
column data was calculated though (1), yielding a correlation coefficient with the real values of 0.82. 
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Table 1. Predictors relevance for soluble epilimnetic Mn, literature/reality/statistical analysis 

Main predictors 
Relevance in prediction 

Literature Hinze Dam dataset Statistical Analysis 
Best R Lag MA 

Water column T differential H H 0.82 0 1 
Mnsol, hyp  H L -0.21 58 14 
DO M L -0.29 17 7 
Fe M M x x x 
NOx M M  x x x 
pH L L -0.42 17 7 
Rain M L 0.11 0 1 
Inflow M L 0.09 0 1 

H = high; M= medium; L = low. Lag expressed in days. MA= moving average. 
 

(ݐ)௦,݊ܯ =  ቆቀ భభశ∆ೢ()ቁିቀ భభశ∆ೢቁቇቆ௫ቀ భభశ∆ೢቁିቀ భభశ∆ೢቁቇ
ଷ ∙ ቀ݉ܽݔ൫݊ܯ௦,൯ − ݉݅݊൫݊ܯ௦,൯ቁ + ݉݅݊൫݊ܯ௦,൯  (1) 

Where: ݊ܯ௦,(ݐ) = value of soluble Mn in the epilimnion at time t [mg/L]; ݉ܽݔ൫݊ܯ௦,൯	= maximum value of soluble Mn in the epilimnion within the historical set [mg/L];; ݉݅݊൫݊ܯ௦,൯	= minimum value of soluble Mn in the epilimnion within the historical set [mg/L];; ∆ ௪ܶ = ቀ∑ ்ೢ (ଷ∙௭)మసబ ଷ ቁ − ቀ∑ ்ೢ (ଷ∙௭)ఴసర ହ ቁ        (2) 

Where: 

௪ܶ(3 ∙ (ݖ =	water temperature at depth 3z [°C]. 

4.2. Model development 

Accordingly, the choice of a model was related to the water temperature prediction. Different options have 
been considered and explored. Many physical models (e.g. DYRESM) are able to model the lake water 
temperature with good accuracy, but they require an exhaustive number of lake property variables as inputs. 
More importantly, since the model is required to make predictions one week ahead, many of those inputs 
should be forecasted in-turn, thus summing up the error of each forecast leading to an unacceptable overall 
error. As an alternative, since high correlation coefficients were found between the average air temperature of 
the previous week and the water column temperature (Figure 2), simple statistical models such as Multiple 
Linear Regression (MLR) or Artificial Neural Networks (ANN) for predicting water temperature using only 
air temperature as an input were determined to have potential for a better performance. 

Hence, it was decided to develop three different models, in order to predict the water column temperature one 
week ahead: two statistical models (MLR and ANN), with the average air temperature of the past 7 days (	ܶపതതതതത(ݐ)) and the current water column temperature as inputs, and a physical model (namely DYRESM) 
requiring multiple physical inputs. Once the water column temperature is predicted, it is given as an input to 
the data-driven equation, thus yielding the epilimnetic soluble Mn prediction. 

4.3. Model testing 

Model testing utilised an independent dataset for years 2011-12. The most accurate water column prediction 
model was proven to be MLR, since it shows superior performances of ANN, which yields higher volatility, 
detrimental for the application of the data-driven Mn equation. The physical model (i.e. DYRESM) was also 
tested. Forecast seven days ahead for all the input variables were collected for one month from the Australian 
Bureau of Meteorology (BoM). Within the historical data (i.e. assuming input forecast = input real values), 
the model performance was similar to the MLR. Nevertheless, as expected, when presenting the forecasted 
input the model performance was poorer than MLR, because of the errors in the input predictions by the 
BoM.
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Figure 2.   Soluble epilimnetic Mn, air and water column temperature time series, 2008-12 

Once the MLR was chosen to be the most appropriate water column temperature prediction model, the data-
driven equation was applied, yielding the final model: MLR with Data Driven Equation (MLRDDE). The 
predicted peak concentration is corrected through its correlation with the Mn load in the hypolimnion prior 
turnover and to the water column temperature. Table 2 provides the final structure and performance of the 
model; on the independent test set, MLRDDE was able to predict one week ahead the Mn concentration with 
a correlation coefficient of 0.83 (Figure 3). Similar models for shorter-term predictions were computed too, 
yielding similar performances. In particular, it can be noticed how the beginning of the peak (0.087 mg/L) is 
accurately predicted. Moreover, despite the end of the peak is lagged from the real values, also the second 
peak (similar maximum value) which is an atypical event never encountered into the training set, was 
predicted. 

Thus the model proved to be 
accurate but flexible enough to take 
into account unforeseen phenomena. 

Despite minor events cannot be 
predicted by this model, MLRDDE 
with its few inputs is able to focus 
on the main event and predict it 
correctly. Other models (i.e. 
DYRESM) that rely in the forecast 
of multiple inputs were proved to 
bring to a poorer performance 
overall, and this could mean a 
possible prediction of some minor 
unimportant events but a poorer 
forecast of the critical peaks. 
Because of these considerations, 
MLRDDE was chosen to be a 
suitable model for the prediction 
problem faced in this research.

Figure 3.   One week ahead Mn prediction 
using MLRDDE 
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Table 2. Model structure and performance 

Model part Inputs Output R on the test set 

Part 1 (MLR) ∆ ௪ܶ(ݐ) ∆ ௪ܶ(ݐ + 7) 0.96 
 ܶపതതതതത(ݐ)   

Part 2 (DDE) ∆ ௪ܶ(ݐ + ݐ)௦,݊ܯ (7 + 7) 0.83 

   (ݐ)௦,௬݊ܯ 

5. DISCUSSION AND CONCLUSIONS 

A seven-days ahead Mn prediction model has been created in order to support the planned development of a 
DSS that will assist Seqwater operators in their Mn treatment decisions. The final model (i.e. MLRDDE) was 
able to accurately predict the occurrence of the turnover event and the peak Mn concentration. The creation 
of a DSS based on MLRDDE will lead to cost savings for Seqwater as it will mean that there is a much lower 
requirement for manual sampling and laboratory testing of water quality parameters such as Mn. It will also 
provide operators with a near real time dashboard showing Mn values in the water column at the source water 
intake to the treatment plant. 

Future research seeks to further improve the model validity through including more frequent Mn samples of 
the entire water column. More complete Mn datasets will help to explain some of the unique variations in 
peak Mn concentrations during the lake turnover period from one year to the next. 
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