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Abstract: We assess four different reference forecasts for the purpose of measuring the skill of 
streamflow forecasts generated from Numerical Weather Prediction (NWP) model rainfall forecasts. The 
reference forecasts we investigate are 1) streamflow climatology, 2) persistence, 3) a hydrological model 
forced by zero rainfall and 4) a hydrological model forced by an ensemble of resampled historical rainfall. 
We assess performance of reference forecasts to lead-times of 9 days. Reference forecasts should be simple 
to produce, but also must be reasonably accurate to establish a robust performance threshold. We show that 
because streamflows are strongly autocorrelated, streamflow climatology is a very low performance hurdle to 
clear for any NWP-forced streamflow forecasts, particularly at short lead-times (<2 days). Conversely, 
because the shape of hydrographs is broadly predictable, persistence forecasts generally perform very poorly 
at longer lead times (>1 day). Using a hydrological model substantially improves the accuracy of reference 
forecasts, with resampled–historical-rainfall forced forecasts outperforming zero-rainfall-forced forecasts, 
particularly at longer forecast lead times. We argue that streamflow climatology and simple persistence are 
not accurate enough to be used as reference forecasts. We recommend the use of reference forecasts 
generated by resampled historical rainfalls as a robust performance benchmark of NWP-forced streamflow 
forecasting systems. We demonstrate the use of resampled–historical-rainfall forced reference forecasts to 
assess the performance of a new Australian ensemble streamflow and flood forecasting system developed by 
CSIRO and the Bureau of Meteorology. 
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1. INTRODUCTION 

Numerical weather prediction (NWP) model rainfall forecasts have the potential to extend real-time 
streamflow forecasts (forecasts generated only from observed rainfalls and streamflows) to lead times of the 
order of 10 days, with attendant benefits to water resource and flood managers. NWP-forced streamflow 
forecasting systems (here abbreviated to NSFS) are usually made up of a conceptual hydrological model that 
is spun up to initialise its states and then forced by NWP forecast rainfalls. Often an error correction (or error 
updating) model is also employed as part of an NSFS to align streamflow forecasts with observed 
streamflows when the forecast is issued.  

Traditionally, the simulation performance of hydrological models is assessed against observed streamflows, 
under the assumption that rainfall observations will be available whenever the model is used to predict flows 
(as is the case in real-time forecasting systems). However, using observed streamflows to assess forecasts 
from an NSFS is an unreasonably stringent test, as NWP rainfall forecasts cannot be expected to predict 
rainfall perfectly, even as they offer useful information. Accordingly, the performance of NSFS is usually 
assessed against reference forecasts: alternative (usually simpler) estimates of future streamflows.  

There is no consensus on which reference streamflow forecasts should be used to test NSFS. Climatology has 
traditionally been used as a reference forecast to verify meteorological forecasts, while Pappenberger et al. 
(2008) tentatively advocate the use of persistence forecasts (i.e., using the last available observation as the 
forecast) for assessing flood forecasts. To establish a robust performance threshold for NSFS, reference 
forecasts should be as accurate as possible. The relative performance of different reference forecasts for 
NSFS has not, to our knowledge, been investigated in published literature. We rectify this omission by 
comparing the performance of four reference forecasts: 
streamflow climatology, persistence, the hydrological 
component of an NSFS forced with zero rainfall 
(rather than NWP rainfall) and the hydrological 
component of an NSFS forced with resampled 
historical rainfall. We test the utility of these reference 
forecasts by comparing them to streamflow forecasts 
from an NSFS. 

2. CATCHMENTS 

We present results for two catchments, the Cotter 
River in south-eastern Australia’s Great Dividing 
Range and the South Esk River in north east Tasmania. 
Gauge site locations are given in Figure 1 and 
catchment characteristics are listed in Table 1. 

 

Table 1. Catchment characteristics 

Site Name Period of available hourly 
observations 

Drainage 
area (km2) 

Annual runoff 
(mm) 

Annual 
rainfall (mm) 

Annual 
PET (mm) 

Cotter River at Gingera 01/01/1990-01/06/2012 145 276 876 1117 

South Esk River at Llewellyn 01/01/2001-01/06/2012 2284 234 686 950 

 

3. NUMERICAL WEATHER PREDICTION FORCED STREAMFLOW FORECASTS 

For this study, we use the new ensemble NSFS that is being jointly developed by CSIRO and the Bureau of 
Meteorology. This system produces ensemble 9-day streamflow forecasts at an hourly timestep. The system 
applies a rainfall post-processor (RPP) to rainfall forecasts from the ACCESS-G NWP model to correct 
biases and quantify rainfall forecast uncertainty (Robertson et al., 2013). Post-processed NWP rainfall 
forecasts are then used to force the GR4H rainfall-runoff model (an hourly variant of the daily GR4J model 
described by Perrin et al., 2003), and runoff is routed with the well-known linear Muskingum channel routing 
algorithm.  

GR4H differs from the daily GR4J model described by Perrin et al. (2003) as follows: 

1. The X2 parameter is multiplied by 0.67, and the X3 parameter is multiplied by 2.21. 

 

Figure 1. Locations of gauge sites (red dots). 
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2. The percolation function for GR4H assumes an original maximum store capacity of 14 X× . 

3. GR4H has a unit-hydrograph exponent of 5/4. 

We use a modified version of the dual-pass error correction model (Pagano et al., 2011) to update 
hydrological model predictions and correct biases. Only the second pass of the dual-pass model is used. The 
correction is decayed exponentially so the forecast gradually reverts back to the ‘raw’ streamflow forecast. 

For convenience, we refer to the combination of GR4H, channel routing and error correction models as the 
hydrological model. 

ACCESS-G forecasts are available from 1 August 2010 to 30 April 2012, which means the NSFS could only 
be evaluated for this period (accordingly, we refer to this as the evaluation period). Independent post-
processed rainfall forecasts are obtained for the evaluation period using a leave-one-month-out cross-
validation procedure (Robertson et al., 2013). The hydrological model parameters are calibrated using all 
available hourly rainfall and streamflow data before 1 January 2010 (data availability is listed in Table 1). 

4. REFERENCE FORECASTS 

4.1. Streamflow climatology 

Streamflow climatology is calculated by taking long-term averages of observed streamflow at each ordinal 
date across years. This results in a very noisy climatology. To smooth the series, we apply a 31-day moving 
average. We calculate streamflow climatology from all data available before 1 January 2010.  

4.2. Persistence 

Persistence takes the most recent streamflow observation available at the forecast issue date and assumes this 
flow will continue for the duration of the forecast (in this case, 9 days).  

4.3. Hydrological model forced by zero rainfall 

The performance of the hydrological modelling component of any forecasting system can be readily 
evaluated with traditional comparisons to observed hydrographs. When initialised, a well-functioning and 
hydrological model should be able to accurately represent hydrograph recessions, even without rainfall 
forcing, during the forecast period. This is particularly true when an error correction model is applied as part 
of the hydrological model. Accordingly, we test if reference forecasts generated by the hydrological model 
forced by zero rainfalls will outperform persistence forecasts. We refer to these as zero-rainfall-forced 
reference forecasts. 

4.4. Hydrological model forced by resampled historical rainfall 

In addition to zero-rainfall forcing, we generate reference forecasts with the hydrological model forced by 
resampled historical rainfall. The method we use to resample historical rainfall is similar to that use to 
generate the ensemble streamflow prediction forecasts long used by the United States National Weather 
Service (see, e.g., Day, 1985). Rainfalls are resampled from the historical record for each ordinal forecast 
issue date. For each ordinal date, we first sample 9-day rainfall sequences beginning at this ordinal date for 
each year in the observation record. We then sample 9-day rainfall sequences from the previous ordinal day 
and then the following ordinal day from each year in the observations record. We repeat this process until we 
have 100 sequences of 9-day rainfalls from the historical record. To generate reference forecasts, we force 
the hydrological model with the 100-member ensemble of resampled historical rainfall. We refer to these as 
historical-rainfall-forced reference forecasts.  

5. VERIFICATION MEASURES 

The lack of consensus on which reference forecasts to employ arises in part because the choice of reference 
streamflow forecasts may depend on the objectives of the forecast: for example, forecasts may be intended 
either for flood prediction or for water allocation, or forecasters may be more interested in shorter or longer 
lead times, all of which can influence the choice of reference forecast. Accordingly, we compare reference 
forecasts using three verification measures that can be used to assess the performance of an NSFS in 
forecasting: 1) floods (the Nash-Sutcliffe efficiency, NSE), 2) overall flows, including the performance of 
ensemble forecasts (the Continuous Ranked Probability Score, CRPS), and 3) flow volumes for water 
resource allocation (bias). These are described in more detail below. 
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We present all verification measures conditioned on lead-time. Verification is performed for the evaluation 
period 1 August 2008 to 30 April 2010. 

5.1. Nash-Sutcliffe Efficiency (NSE) 

The NSE (Nash and Sutcliffe, 1970) is commonly employed as a deterministic verification measure in 
hydrology. NSE is defined as  
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where QFcast and QObs are the forecast and observed discharges at time t. To apply NSE to ensemble forecasts 
we take the mean of the ensemble at each time step. Because the error term is squared in NSE, this puts 
greater emphasis on instances where errors are very large. Very large errors tend to occur at larger flows, 
meaning NSE is something of a de facto measure of forecast performance at large flows.  

5.2. The Continuous Ranked Probability Score (CRPS) 

The CRPS is regularly used as an overall measure of ensemble forecast performance. The CRPS measures 
the error of all ensemble members with respect to observations, in the units of the forecast (in our case, m3/s), 
by calculating the area between the cumulative distribution functions (CDFs) of the forecast and observation. 
Mathematically, the CRPS is expressed as: 
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Where F(Q) is the forecast CDF and H(Q-Qobs) is the Heaviside function, which takes the value 0 when 
Q-QObs<0, and 1 otherwise. 

Larger CRPS values indicate a poorer forecast. A highly useful characteristic of the CRPS is that it collapses 
to the mean absolute error for deterministic forecasts, allowing comparison of ensemble and deterministic 
forecasts. 

5.3. Bias 

Bias measures the difference in total volume between simulated and observed streamflows, as follows: 
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Bias is a deterministic measure. As with NSE, we extend bias to ensemble forecasts by defining QFcst as the 
average of all ensemble members for each time step. We do not measure the bias of persistence forecasts. For 

persistence, ObsFcst QQ ≈  during the evaluation period (by definition), and this renders bias a meaningless 

performance measure for persistence.  

Bias gives no indication of how well forecasts represent the shape or variation of observed hydrographs, and 
consequently is likely to be the performance measure of least interest to users of short-medium term 
forecasts. Nonetheless, bias is useful for diagnosing long-term forecast errors, and we include it accordingly. 

6. RESULTS AND DISCUSSION 

NSE, bias and CRPS for both catchments are shown for all reference forecasts in Figure 2. In addition, 
Figure 2 shows performance metrics for NSFS forecasts and for perfect rainfall forecasts (hydrological model 
forced by observed rainfall). Perfect rainfall forecasts show the best forecast performance attainable given the 
limitations of the hydrological model. 

At lead-times of 3 days or fewer, streamflow climatology is often the poorest performing forecast for all 
verification measures. This is unsurprising, for two major reasons. First, the other reference forecasts are 
updated with streamflow information available at the forecast issue time. Because streamflows are usually 
highly autocorrelated, this information allows all the other forecasts to outperform streamflow climatology at 
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Cotter River at Gingera South Esk River at Llewellyn 

  

  

 

Figure 2. Performance measures for a range of reference forecasts calculated at each lead time for the Cotter 
River (left column) and the South Esk River (right column). Top row shows NSE, middle row shows bias, 
bottom row shows CRPS. Forecasts shown are: hydrological model forced with perfect (observed) rainfall 

forecasts (purple); hydrological model forced with post-processed NWP rainfall forecasts (blue); 
hydrological model forced with zero rainfall forecasts (red); streamflow climatology (green); persistence 

(light blue); hydrological model forced with resampled climatology rainfall forecasts (yellow). 

 

short lead times. Second, the period over which streamflow climatology is calculated included 2001-2010, 
the period of the so-called ‘Millenium Drought’ in south-east Australia, one of the driest periods in south-east 
Australia in recorded history. Conversely, the evaluation period experienced above-average rainfalls. As a 
consequence, streamflow climatology chronically underestimates streamflows in the evaluation period, as 
shown by strongly negative biases in Figure 2. 

Streamflow climatology might be expected to be a reasonably stringent measure of performance at longer 
lead-times, where catchment memory has a reduced influence on the forecast skill of the other reference 
forecasts. It is, however, one of the poorest performing reference forecasts at longer lead times because it is 
so strongly biased, as shown particularly by the CRPS (Figure 2). While streamflow climatology will not 
necessarily be biased for a given evaluation period, our example shows that this can occur. At both longer 
and shorter lead-times, then, streamflow climatology is a very low performance hurdle for an NSFS to clear. 
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Persistence reference forecasts perform 
consistently well at short lead times, a 
product of the high autocorrelation of 
streamflows. The forecast horizons for 
which persistence performs well will 
vary between catchments, as we show 
here: persistence shows some skill 
(NSE>0) for lead-times of 3 days in the 
Cotter River, but is only skilful for lead 
times of <1 day in the South Esk River 
(Figure 2). We note, however, that the 
performance of persistence at short lead 
times is no better than the hydrological 
model forced by zero rainfalls for both 
NSE and CRPS. 

Zero-rainfall-forced reference forecasts 
perform well in relation to persistence in 
Figure 2 largely because the hydrological 
model includes an effective error 
correction model. When the error 
correction model is not included as part of the hydrological model, persistence outperforms zero-rainfall-
forced forecasts for lead-times up to ~3 days (Figure 3). Indeed, without hydrological error correction, 
persistence outperforms even perfect-rainfall forced forecasts for lead-times up to 1 day (Figure 3). This 
underscores the need for error correction (or other forms of data assimilation) to make use of recent 
streamflow observations in any NSFS. When recent observations are used to inform the hydrological model, 
however, zero-rainfall-forced reference forecasts perform as well at short lead times as persistence, and 
substantially better at longer lead times. We contend, accordingly, that persistence is always an insufficiently 
stringent reference forecast at longer lead-times, and is no better than a well-functioning hydrological model 
at shorter lead times. 

Resampled-historical-rainfall forced reference forecasts are the best performing reference forecasts for all 
lead-times and for all measures of performance (Figure 2). Zero-rainfall-forced forecasts tend to 
underestimate flows at longer lead times when soil moisture stores in the hydrological model become 
depleted. Resampled-historical-rainfall forced forecasts add historically plausible quantities of water to the 
system, leading to less negatively-biased reference forecasts (cf. zero-rainfall-forced forecasts) at longer lead 
times. As expected, when rainfalls are sampled from a significantly drier period than the evaluation period 
(as occurs in both catchments), resampled-historical-rainfall forced forecasts tend to be negatively biased in 
the evaluation period (Figure 2). Similarly, the reverse effect can be expected if the evaluation period is 
significantly drier than historical resampling period. Despite this, the resampled-historical-rainfall forced 
forecasts show the highest NSE values, are least biased, and have the lowest CRPS of any reference 
forecasts, particularly at long lead times. CRPS tends to advantage ensemble forecasts, because any 
reasonable estimate of uncertainty tends to reduce the areal difference between the ensemble CDF and the 
observed CDF. Nonetheless, we have shown that the resampled-historical-rainfall forced reference forecasts 
outperform the other (deterministic) reference forecasts in the deterministic verification measures (NSE and 
bias), validating the CRPS results. 

As with zero-rainfall-forced forecasts, at shorter lead-times (<2 days) resampled-historical-rainfall forced 
forecasts performs comparably well with persistence only when hydrological error correction is applied. 
When hydrological error correction is not applied to the Cotter River, for example, persistence outperforms 
resampled-historical-rainfall forced forecasts at lead times of 36 hours or fewer (Figure 3). 

When hydrological error correction is applied, the performance of persistence, zero-rainfall and reference 
forecasts is very similar for lead-times of one day or fewer. Accordingly, any of these three is a sufficiently 
stringent test of NSFS at very short lead-times. However, at longer lead-times the performance of resampled-
historical rainfall is clearly superior to other reference forecasts, and offers the most rigorous test of any 
NSFS for a range of verification measures. Accordingly, we recommend that NWP forecast streamflow 
forecast systems be assessed against resample-historical-rainfall forced forecasts. 

In addition to outperforming other reference forecasts, resampled-historical-rainfall forced reference 
forecasts have the considerable benefit of generating a reference forecast ensemble. Much attention has 
recently been directed at generating ensemble forecasts from NWP inputs to represent uncertainties in the 

Figure 3. CRPS for the Cotter River for forecasts without 
hydrological error correction. Forecasts shown are: GR4H 

forced with perfect (observed) rainfall forecasts (purple); GR4H 
forced with post-processed NWP rainfall forecasts (blue); 
GR4H forced with zero rainfall forecasts (red); streamflow 

climatology (green); persistence (light blue); GR4H forced with 
resampled climatology rainfall forecasts (yellow). 
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forecasts: for example, the NSFS presented here generates ensemble forecasts that reflect uncertainty in 
NWP rainfall forecasts. Having an ensemble reference forecast allows comparison of ensemble-specific 
verification measures, most notably those related to statistical reliability (i.e., measures that demonstrate 
whether the uncertainty in the forecasts is correctly represented by the ensemble). 

Figure 2 shows that the NSFS outperforms even the stringent resampled-historical-forced reference forecasts 
at all lead times for these two catchments in all verification measures. This gives a strong indication that the 
forecasts from this NSFS are likely to be useful to end-users. We note, however, that the performance of the 
NSFS would be overstated at long lead times had we chosen, for example, persistence as the reference 
forecast. This would give an unreasonably inflated assessment of value to end-users for long lead-time 
forecasts. 

7. SUMMARY AND CONCLUSIONS 

We have investigated four reference forecasts for the purposes of assessing the performance of NWP-forced 
streamflow forecasting systems: streamflow climatology, persistence, a hydrological model forced by zero 
rainfall; and a hydrological model forced by resampled historical rainfalls. We aimed to find the best 
performing reference forecast for a range of verification measures, in order to offer the most stringent test to 
NWP-forced streamflow forecasts. Streamflow climatology gives by far the poorest reference forecasts, even 
at long lead times. We show that a well-functioning hydrological model (in this case, one that applies 
hydrological error correction) is able to produce similarly accurate streamflow forecasts to persistence at 
short lead-times, and perform markedly better than persistence at longer lead-times, even when forced by 
zero rainfall. 

Forecasts generated by a hydrological model forced with resampled historical rainfalls offered the best 
overall performance. They performed similarly to persistence at short-lead times (<2 days) and clearly 
outperformed all other reference forecasts at longer lead-times. Accordingly, we recommend that resampled-
historical-rainfall forecasts be used to measure the performance of NWP-forced streamflow forecasts in 
preference to persistence or other reference forecasts. 

We note that for any reference forecast that relies on a hydrological model, extreme care must be taken to 
ensure the hydrological model performs well. This includes, in particular, employing an effective method for 
updating forecasts with recently observed streamflows. 
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