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Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. 
Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, 
weather and climate modelling will benefit the predictability and understanding of these processes. At 
present, satellite platforms are active in mapping global surface soil moisture jointly at sub-daily intervals 
and mesoscale resolutions. However to correctly interpret observed variations and assimilate them in 
hydrological and weather models, the error structures of the retrieved soil moisture data need to be better 
understood and characterised.  

In this paper we investigate the utility of a recently proposed method to quantify the variance of stochastic 
noise in passive and active satellite soil moisture products. While it is typical to analyse the difference 
between satellite retrievals and ground truth in the time domain, this method is based on quantifying the 
differences between retrieved soil moisture and a standard water-balance equation in the conjugate Fourier 
domain. The method, which referred to as Spectral Fitting (SF), is applied to estimate the errors in passive 
and active retrievals over Australia (10-44o South, 112-154o East). In particular we consider the AMSR-E 
(Advanced Microwave Scanning Radiometer – Earth Observing System) LPRM (Land Parameter Retrieval 
Method), CATDS (Centre Aval de Traitement des Données SMOS) SMOS (Soil Salinity and Ocean 
Salinity), and TU-WIEN (Vienna University of Technology) ASCAT (Advanced Scatterometer) soil 
moisture products. The results are compared against the errors estimated using the standard method of triple 
collocation (TC) with AMSR-E, SMOS and ASCAT as the data triplet.  

Our analyses show that the SF method is able to recover similar and reasonable error maps that reflect 
sensitivity of retrieval errors to land surface and climate characteristics over Australia. As expected, more 
vegetated and wetter areas are usually associated with higher errors. Additionally for SMOS and ASCAT, the 
dry cooler desert areas of southern Australia also show higher errors, in contrast to lower errors over the 
hotter dry desert of central Australia. The reverse is the case for AMSR-E. These patterns are also reflected in 
the spatial error maps of TC analysis and the direct comparisons of SF and TC estimates show moderate-to-
good correlations: 0.64 for AMSR-E, 0.68 for SMOS, and 0.68 for ASCAT. However the SF yields lower 
estimates than TC at the high end of the range. On one hand, this is perhaps expected given rationale of the 
SF method to estimate only the stochastic/high-frequency components of the total errors. On the other hand, 
the simple error model and implementation of TC with non-coincident overpass times can also over-estimate 
the errors.  

This work therefore presents an additional perspective on satellite soil moisture observation errors (in the 
Fourier domain) that may complement other error estimation approaches (in the time domain), thereby 
improving our understanding of the sources and types of errors. 
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1. INTRODUCTION 

Soil moisture (SM) is an essential geophysical variable in hydro-meteorological and climate studies. To 
achieve accurate modeling at large scales, frequent mesoscale observations of terrestrial SM are necessary 
due to high spatiotemporal heterogeneity. Satellite remote sensing provides this capability and, at present, 
several satellite platforms are active in mapping global surface SM on a (near) daily basis. In order to use 
these observations with confidence, characterization of their errors is critical. For instance, when calibrating 
or rescaling one data set against the other, it is important to know the errors because linear regression leads to 
under-estimation of the signal. Also, optimal data assimilation methods require accurate error estimates to 
assign correct weights to observational data and model prediction. Error characterization can also provide 
further insights into retrieval sensitivities to land surface characteristics. 

Currently there are two methods for estimating the errors in satellite SM data without relying on ground truth. 
The first method is triple collocation (TC) (Stoffelen, 1998), which uses the covariances between three 
independent estimates of SM related by an affine model to solve for their error variances (Scipal et al., 2008). 
To achieve statistically-convergent estimates, large number of linearly-related coincident observations with 
independent error structures from three sensors are required (Zwieback et al., 2012). This can however be 
difficult to realise in practice. The second method implements propagation of input errors using Gaussian 
error propagation (Naeimi et al., 2009) or partial derivatives of radiative transfer model for passive retrievals 
(Parinussa et al. 2011). These methods assume a priori knowledge of input and model structural errors, 
although they do enable time-dependent estimations of the retrieval errors.  

Within this context, we consider an alternative approach proposed in Su et al. (2013a) to the problem –we 
measure the difference between the empirical power spectra of the SM observations and the spectrum of a 
water balance equation in the Fourier domain to estimate the variance of stochastic noise (possibly a subset 
of the total error) in the satellite data. We apply this method to three satellite SM products: Advanced 
Microwave Scanning Radiometer – Earth Observing System (AMSR-E), Soil Moisture and Ocean Salinity 
(SMOS) mission, and Advanced Scatterometer (ASCAT) of MetOp-A satellite. TC is also implemented for 
comparisons. Spatial error estimates are made over Australia (10-44o South, 112-154o East). Possible 
associations with vegetation and rainfall distributions are also investigated. 

2. DATA SETS 

The AMSR-E sensor aboard the Aqua satellite provided C and X-band radiance observations used to retrieve 
surface SM at 1-5 mm surface depth during the period 6/2002 to 10/2011. It provided daily scans of Australia 
during the mid-day ascending (1.30pm local time) and night time descending (1.30am) orbits. Most retrieval 
approaches implemented different forms of forward model inversion of the radiative transfer model of 
canopy-masked soil surface to convert measured brightness temperatures to SM. The Land Parameter 
Retrieval Model (LPRM) approach (Owe et al., 2008), used AMSR-E’s dual-polarization observations at 
C/X-bands to estimate the vegetation optical depth (VOD) and the dielectric constant, and the 37 GHz 
channel to estimate the land surface temperature. Here we use the version 5, Level 3 gridded, combined C 
and X-band SM data set provided in units of volumetric SM on a regular 0.25o latitude and longitude grid. 

The SMOS satellite was launched in 11/2009 and is dedicated to SM retrieval at ~5 cm depth using 
observations at L-band. The ascending overpass over Australia is around 6am local time, and descending 
pass at 6pm. It has a single observation frequency, but uses observations at multiple incident angles. The 
standard SMOS algorithm is based on the L-MEB (L-band Microwave Emission of the Biosphere) model 
and, like the LPRM, it adopts a forward modeling approach to solve for SM and VOD (Wigneron et al., 
2007). However, the algorithm has an additional degree of freedom to accommodate different soil types and 
land covers. We use the Reprocessed (version RE01) SM data set (1/2010 – 3/2012) provided by Centre Aval 
de Traitement des Données (Jacquette et al., 2010). Their multi-orbit retrieval algorithm extends the standard 
algorithm to provide better estimations at revisited locations, take auto-correlation of VOD into account, 
increase SMOS retrieval coverage, and resample swath data on an Equal-Area Scalable Earth (EASE) grid. 

The ASCAT sensor onboard the MetOp-A satellite transmits and measures electromagnetic waves in C-band 
at multiple incidence angles. These measurements over Australia are obtained about twice a day, at ~9am and 
9pm. The backscatter is sensitive to the SM content of the scattering land surface and by using a time-series 
based change-detection algorithm (Wagner et al., 1999), the SM changes can be measured in relative terms, 
thus become less susceptible to the adverse influence of vegetation cover and surface roughness on retrievals. 
The ASCAT data set (1/2007 – 12/2012) is defined over a sinusoidal grid with ~12.5 km spacing, and was 
produced using Water Retrieval Package Version 5.4 (Naeimi et al., 2009). 
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Satellite SM products are expected to have declining retrieval accuracy with increasing vegetation. One 
effect is the reduced signal-to-noise ratio of the observed surface emission against background contributions 
due to signal attenuation by vegetation, and the other is related to the ability of the retrieval methods to 
estimate and correct for this attenuation. We explore this possibility by comparing the derived error map with 
the leaf-area index (LAI) retrieved by MODIS (Moderate Resolution Imaging Spectroradiometer) on 
Terra/Aqua satellites. The 2001-2010 LAI estimates of ~1x1 km2 resolution produced by CSIRO 
(Commonwealth Scientific and Industrial Research Organization) (Paget & King, 2008) are used to provide 
daily average LAI across Australia, as shown in Figure 1a. The regional climatology may also have 
associations with errors in satellite retrievals. We use re-processed TRMM (Tropical Rainfall Measuring 
Mission) 3B42 (Huffman et al., 2007) Version 7 data over the period 2001-2010. The data is available at 3-
hourly intervals on a regular 0.25o grid and is aggregated to produce mean annual rainfall map in Figure 1b. 

3. METHODOLOGY 

3.1. Model fitting in Fourier domain 

Here we describe the method used to estimate the respective stochastic errors in the three satellite products. 
The method, which we refer to as Spectral Fitting (SF), is a stand-alone procedure that measures the 
difference between observed SM and expected SM dynamics stipulated by a water balance equation in the 
Fourier domain. In particular, the dynamics of SM at any spatial scale (point-scale or coarse scale, (Salvucci 
et al., 2001)) is governed by the equation, 

μ
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dt

td −=      (1) 

where θ is the topsoil water content in the surface layer, p is the throughfall precipitation rate, l is the total 
loss rate from the layer due to surface runoff, evaporative loss and drainage, and μ is the layer thickness. 
Invoking a linear approximation that the drainage is proportional to the amount of soil water such that l(t)/μ = 
ηθ(t) and a Poisson model of precipitation arrival times, the differential equation can be solved in the Fourier 
domain to yield a solution for the power spectrum of the SM (Su et al. 2013a), 
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for ω >0, where Θ(ω) and P(ω)=P (ω >0) are the Fourier transforms (FT) of θ(t) and p(t)/μ respectively, η is 
the effective loss rate, and ω = 2π/Τ is the angular frequency of a spectral component with period Τ. The 
water balance equation therefore predicts that the small-time scale SM dynamics (in the large ω regime) 
mimic Brownian motion and have a brown-like spectrum that scales as ω–2 in the high-frequency regime.  

Assuming an additive Gaussian white-noise error with spectral amplitude E and error variance 2
eσ , the FT of 

erroneous satellite data is, 

Esat +Θ=Θ )()( ωω ,     (3) 

so that its power spectrum becomes, 

 

Figure 1. (a) Vegetation characteristics across Australia using MODIS-retrieved leaf-area index (LAI). 
(b) Mean annual rainfall distribution based on re-processed TRMM 3B42 data set. 
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In the final step, we recast the power spectrum as power spectral density (PSD) (i.e., equivalent up to a 

multiplicative constant) and note that E in the Fourier domain and 2
eσ  in the time domain are related by, 

tE e Δ= 22 σ ,     (5) 

for a sampling interval of Δt. Eqs. 4 and 5 therefore form the basis for estimating the amount of stochastic 
noise in the satellite products. In sum, given a satellite SM time series input, we estimate its PSD using fast 
Fourier transform and by fitting the model in Eq. 4 to the PSD, we arrive at an estimate of E (together with 
other model parameters P and η) and the error variance via Eq. 5. Su et al. (2013a) showed that half a year of 
data is sufficient for reliable estimation of the PSD in the high-frequency regime.  

3.2. Triple collocation 

Triple collocation (TC) is now a widely-used method for estimating errors in hydrometeorological and 
oceanographical data sets. Given three spatially and temporally co-located measurements of the same target 
variable f, TC adopts an affine model to relate the data sets, 

,,, yyx fZZfYYfXX εβεαε ++=++=++=   (6) 

where X acts as the reference,   denotes the expectation value of the given parameter, zyx εεε ,,  are zero-

mean Gaussian random errors orthogonal (independent) to one another, and α and β are multiplicative biases. 
Differences in means act as additive biases between the data sets. The statistical relations between the three 
data sets provide sufficient constraints to determine their error variances simultaneously. Specifically with 
the changes of variables XXX −→ , YYY −→ , and ZZZ −→ , it can be shown that, 
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In some cases where there is no exact solution, approximate solutions are determined by solving Eq. 7 using 
constrained nonlinear minimization. 

We use the TC method with the AMSR-E (X), SMOS (Y) and ASCAT (Z) data sets to determine their error 
variances.  Then, given that the SF model is compatible with these error characteristics, the TC-estimated 
error variance are directly compared with those estimated with the SF method. The satellite observations are 
made at different times. In order to apply the TC technique, we consider the triplet of overpass times 6am 
(SMOS), ~9am (ASCAT), 1.30pm (AMSR-E) to be coincident in time. The next triplet is 6pm (SMOS), 
~9pm (ASCAT), and 1.30am (AMSR-E). It is important to realize that instances where there was rainfall 
during intermediate periods of satellite overpasses could artificially inflate the estimated errors. Therefore the 
TRMM rainfall data was used to identify and remove these instances from the analysis. Finally, we note that 
errors of day and night-time retrievals are typically different due to variable thermal conditions; but since 
both data are used jointly in the SF and TC analyses, their error estimates will represent some average of the 
two and are directly comparable. 

3.3. Data pre-processing 

The three SM products are gridded differently and have different spatial resolutions. To allow direct 
comparisons of the three products, we followed the approach described in Su et al. (2013b) to resample 
SMOS and ASCAT data sets to match the working spatial 0.25o grid of AMSR-E. For SMOS we use area-
weighted averages based on the overlap between satellite pixels. For ASCAT, there are several retrieval 
points uniformly distributed within a 0.25o pixel. To avoid artificial biases introduced by upscaling, 
individual points are first converted to volumetric units using ancillary soil porosity data then averaged to an 
areal estimate. All data points identified with error flags were eliminated. In particular, for ASCAT, the data 
were masked when quality flag SSF > 1, the advisory on water fraction was >50%, the snow advisory was > 
0, or the frozen soil advisory was > 0. For AMSR-E and SMOS, poor-quality retrievals with quality flags 
SSF and DQX < 0 were eliminated. These re-processing steps led to the baseline data sets for SF and TC. 
Spatial resampling using equal-weighted averaging was also performed on the LAI data. 

Following Draper et al. (2013), we apply TC on SM anomalies, which are defined by deviations from the 
seasonal cycle and are calculated using a W=30-day moving window. As there are many missing values in 
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the data sets due to overpass alignment and swath width limitations, we retain the anomaly estimates 
calculated with windows containing a minimum 35% of valid data. Furthermore calculations were performed 
at locations with ≥100 triplets. 

To perform SF, we require regularly sampled data in time. To obtain a suitable timeseries segment for error 
analysis, the following steps were taken: (1) For each retrieval location or grid cell, the longest continuous 
timeseries segment (containing at most 3 days or equivalently 6 consecutive missing values) was selected. 
Since we assume stationary stochastic noise, we do not limit the specific time frames from which the 
segments are selected. (2) Segments of length shorter than 9 months are omitted. Segments with more than 
65% missing values are also omitted. The 65% threshold was chosen for ASCAT, since AMSR-E and SMOS 
typically contains 50–60%. (3) A one-dimensional gap-filling algorithm based on discrete cosine transform 
(Wang et al., 2012) was used to infill the missing values in the selected segments.  

4. RESULTS AND DISCUSSION 

Figure 2 shows the error estimates for the three satellite products estimated by SF and TC over Australia. 
Note that for SMOS, the gaps in Figure 2b are regions with small samples (< 9 months). Visual inspections 
of the spatial structure of the SF error maps show similarities between the products. The more vegetated and 
wetter areas (see Figure 1a and b) are usually associated with higher errors. The retrievals over the 
transitional regions from tropical savannah (Köppen Aw, Peel et al., 2007) to hot arid steppe regions (BSh) in 
the northern parts also show increased errors. For SMOS and ASCAT, the dry cooler desert areas (BWk) of 
southern Australia also register larger errors, although these regions experience small SM variability. By 
contrast, over the hot dry desert in the central regions, SF identified smaller errors in SMOS and ASCAT, but 
larger errors in AMSR-E. In the eastern areas, the products, especially SMOS and ASCAT, show markedly 
larger errors in the Murray Darling Basin (BSh, Cfa). Comparing the SF and TC maps, one can discern 
several similarities. Many features identified in SF maps above are also reflected in these maps. 

There are also some notable differences. In particular, TC reveals smaller-scale error structures that reflect 
the complexity of associated land characteristics with a mix of vegetation and river systems. There is also 
greater spatial heterogeneity in errors in central Australia. Figure 3 provides quantitative comparisons of SF 
and TC estimates in terms of Pearson’s correlation, R, where the 95% confidence interval is calculated using 
Fisher’s transform. For all 3 products, there exists significant association (R=0.64–0.68) between SF and TC 
estimates. But it is obvious that SF generally yields lower estimates at the high-error limit. The possible 
reasons for these differences are as follows. 

Recall that the basis of SF is to distinguish stochastic errors that become apparent in the high-frequency 
regime. One possible explanation is that, contrary to the white noise assumption in the SF, the stochastic 

 

 

Figure 2. Error maps over Australia for different satellite products, estimated using SF (a-c) and TC (d-f). 
Note that the range of the colour map is truncated at 0.08 m3m-3.  
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noise may be autoregressive in nature. However the autocorrelation in the noise should be weak for AMSR-E 
retrievals because every retrieval is based on instantaneous observations and the LPRM does not rely on 
ancillary data. SMOS’ reliance on ancillary sources of land surface temperature may render it more 
susceptible to autoregressive errors.  Another issue is that additional spectral features at high frequencies 
exist. Su et al. (2013a) found resonance peaks in AMSR-E and SMOS and non-uniform spectral distribution 
in ASCAT, and they can affect the error estimation. This consideration led to the choice of using absolute 
deviations as the cost function for model fitting; however, the presence of these spectral features can still lead 
to higher estimates. Nevertheless these considerations suggest the tendency of SF to over-estimate the 
variance of stochastic errors, whilst the results in Figure 3 suggest the contrary. It is more likely that gap-
filling algorithm adds in smooth segments to the data or the difference may be attributed to TC analysis.  

The simple error model of TC can lead to larger error estimates. The additional components observed in the 
satellite products in the Fourier domain suggest that the systematic differences between the three data sets are 
not merely multiplicative and additive biases. These additional spectral features are product-specific signals 
(e.g., due to representation differences or biased sampling) that can artificially inflate the TC-based error 
estimates. Additionally, specific practices of data pre-processing such as removing seasonality (Draper et al. 
2013) and the choice of data triplets (e.g., use of model SM) can also change the error characteristics. In 
particular, while the combination of two passive and one active retrievals has also been considered previously 
(e.g., Leroux et al., 2011), the use of similar radiative transfer (τ-ω) model for retrieving SM from AMSR-E 
and SMOS may lead to cross correlations in their errors, undermining the mutually independent error 
assumption – this dependency will be investigated in future work. 

In the final but preliminary analysis (Table 1), we explore possible associations between the spatial structures 
of the errors and several other variables, namely the regional soil wetness (or the temporal mean moisture), 
vegetation cover indicated by LAI and the rainfall distribution. First, we find that mean soil wetness is 
associated with higher errors in SMOS, (R=0.82 (SF) and 0.73 (TC)). It is also a reasonable predictor for the 
SF-based error map for ASCAT. Despite visual similarities between the LAI, rainfall and error maps, we 
observed that static vegetation and rainfall characteristics are generally weak indicators of error levels. Future 
studies will consider the topographical and variability of the land surface to better understand the revealed 
error structures. 

5. CONCLUSIONS                                                                                                                                                                   

This study has compared two error estimators, TC and SF, applied to three remotely-sensed SM data sets 
over Australia. Despite fundamental differences in concepts and implementations, the two methods produce 

Table 1. Summary of correlations between a range of variables (mean SM, leaf-area index (LAI), and 
mean annual rainfall) and error estimates using different methods for different satellite products. The 
square brackets indicate the 95% CI.  

  Correlation with error std. dev. 
Products Estimator Mean SM LAI Rainfall 
AMSR-E SF 0.36[2] 0.51[1] 0.24[2] 

TC 0.17[2] 0.43[1] 0.29[2] 
SMOS SF 0.82[1] 0.61[1] 0.45[2] 

TC 0.73[1] 0.46[1] 0.30[2] 
ASCAT SF 0.64[1] 0.48[2] 0.25[2] 

TC 0.42[2] 0.16[2] 0.06[2] 

Figure 3. Scatterplots comparing the error estimates from the two methods. R is the Pearson’s correlation 
with 95% CI in square brackets (e.g., 0.64[1] has a CI of 0.01), and N identifies the number of pixels. 
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structurally similar and reasonable error maps that allow one to relate the retrieval errors to land surface and 
climate characteristics. For the three satellite products, we find fair-to-good correlations between the SF and 
TC error estimates. However in absolute terms, the SF yields lower estimates in the large-error limit. While 
SF may under-estimate the overall errors by only estimating its stochastic components or due to the gap-
filling, the simplicity of the error model and data pre-processing for TC also warrant careful deliberation. By 
comparing the different error estimation approaches (including error propagation), we can better understand 
the nature of the differences between different satellite products and attribute the sources of their errors, and 
examining their spectral characteristics may provide these further insights. 
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