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Abstract: Calibration is the process of estimating the optimal parameters for a model to accurately reflect 
the real system, using historical records of system data. The model calibration, however, is frequently limited 
by availability, quality, quantity and the nature of the ground observations. Lack of streamflow observations 
in the vast majority of the world, for example, constrains the calibration of hydrologic and land surface 
models. In this study, an attempt is made to calibrate a land surface model by using satellite retrievals of soil 
moisture and evapotranspiration (ET), without relying on streamflow measurements. This paper examines the 
capability of using satellite measurements for the calibration of hydrologic/land surface models for ungauged 
locations.  

The Australian Water Resources Assessment Landscape model (AWRA-L) modified to have single 
hydrological response unit (HRU) per each grid cell is chosen, as a simple land surface model that requires 
minimum forcing variables. Initial parameters for the control case are generated based on the fraction of trees 
and the Budyko’s dryness index. Microwave soil moisture retrievals from the Advanced Microwave 
Scanning Radiometer-EOS (AMSR-E) and daily estimates of ET from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) are adopted to calibrate a selection of the AWRA-L parameters. Shuffled 
complex evolution uncertainty algorithm (SCE-UA) is employed to perform local calibration at 25-km grid 
cell in the Kyeamba catchment, southeastern Australia. 

Multiple criteria objective function for calibration is selected based on the AWRA-L output behavior of 
evapotranspiration and soil moisture compared to respective remote measurements. It considers the bias and 
the correlation between observed and simulated evapotranspiration and the correlation between observed and 
simulated soil moisture. Calibration experiments are carried out in daily time step from 2003 to 2007 and 
validated from 2008 to 2010. The optimum parameters obtained are employed to calculate the monthly 
average runoff ratio and is evaluated against the runoff ratio derived from streamflow observations at 
Kyeamba catchment. 

The results show that the calibration of AWRA-L using remotely sensed evapotranspiration and soil moisture 
can improve the predictions of evapotranspiration and runoff. Validation conducted in a separate period also 
exhibit improvements in the prediction of evapotranspiration, whereas the improvement in soil moisture is 
trivial during both calibration and validation periods.  The monthly runoff ratio estimated after calibration is 
improved compared to the runoff ratio in the control case. This indicates the potential of calibration with 
evapotranspiration and soil moisture in improving streamflow predictions. Further research is warranted to 
increase efficiency in prediction of runoff ratio, so that the calibration scheme can be applied in the regions 
with sparse or no gauging stations. 

Keywords: Australian Water Resources Assessment Landscape model (AWRA-L), evapotranspiration 
(ET), soil moisture, calibration, validation, runoff ratio 
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1. INTRODUCTION 

A typical model gives only an approximate description of the real system. It is the process of calibration, 
which estimates the best fit parameters for a model to accurately reflect the components of a real system, 
using historical records of system data (Duan et al., 1992). Similarities between the observed and modeled 
variables are judged by the objective functions used (Wagener and Wheater, 2006). The success of 
calibration depends largely upon the quality, nature and amount of monitoring data.  

Streamflow is the most common output of interest in hydrological modeling since it contains time-integrated 
information about water in the catchment system. Streamflow is also a key component of water resource 
management and its extreme values are associated with natural disasters such as floods and drought (Duan et 
al., 1992; Gupta, et al., 2005). Calibration of hydrologic/land surface model is carried out usually using 
streamflow and, if available, other hydrological variables (e.g., Zhang et al., 2011). However, lack of 
streamflow observations and other ground data in the vast majority of areas makes calibration of hydrological 
model a difficult task (Wagener and Montanari, 2011). The most common approach used for calibrating 
ungauged modelling is parameter regionalization (Wagener and Wheater, 2006).  However, regionalization 
may fail to provide catchment specific parameters at ungauged catchments due to the unique nature of the 
watersheds. Grid based models are generally not calibrated; instead they employ parameters available from 
soil maps, remotely sensed vegetation, land surface   map, etc. In this paper, an attempt has been made to 
calibrate a grid based land surface model using remotely sensed evapotranspiration and soil moisture data to 
explore methods to calibrate hydrological models without streamflow observations. 

Land surface models, which are used to model interactions between land, atmosphere and vegetation were 
developed from the  early simple Penman evaporation model (Manabe and Bryan, 1969) and later to more 
complex soil vegetation atmospheric transfer (SVAT) models, such as SiB (Simple Biosphere Model) 
(Sellers et al., 1996), SimSphere (Gillies and Carlson, 1995) and Community Land Model (CLM) (Oleson et 
al., 2004). Among existing land surface models, Australian Water Resources Assessment system Landscape 
model (AWRA-L) developed by the Commonwealth Scientific and Industrial Research Organisation 
(CSIRO) and the Australian Bureau of Meteorology (BoM) is chosen due to the following merits. AWRA-L 
is a relatively simple lumped model requiring minimal input forcing variables. It was developed as a grid-
based model that calculates the water flows and stores at the land surface. The calibration of AWRA-L has 
been, however, confined to limited number of catchments where streamflow records and input forcing data 
are available. Therefore, it is crucial to develop schemes to calibrate the model using alternative sets of 
observations, for example, satellite-based land surface variables, for the parts of Australia where ground data 
are sparse. 

In this study, MODIS retrievals of evapotranspiration (ET) and AMSR-E soil moisture data are used to 
calibrate AWRA-L in 2003-2007. A separate set of observations in 2008-2010 is used for evaluation. 
Shuffled complex evolution uncertainty algorithm (SCE-UA) developed by Duan et al., (1992) is 
implemented to perform local calibration at a grid cell with a resolution 25-km in Kyeamba catchment area, 
southeastern Australia.  This study has important implications for the use of remotely sensed 
evapotranspiration and soil moisture to implement hydrological models at catchments with sparse or no 
monitoring stations. 

2. MATERIALS AND METHODS 

2.1 AWRA-L 

AWRA-L is a grid-based one dimensional biophysical model which calculates the flows and stores of water 
at the land surface on a daily time step (Peña Arancibia et al., 2011; Van Dijk, 2010). The original AWRA-L 
version 0.5 is run at 5-km resolution with multiple hydrological response units (HRUs) for each grid cell, 
however, it is modified to run at 25 km-by-25 km grid size with a single HRU in order to match the support 
scale of the microwave soil moisture retrievals available for the study period.  The main advantage of the 
model over other land surface models is that it requires minimal forcing variables to generate the output 
streamflow, evapotranspiration and soil moisture. The input forcing variables of the model are daily 
precipitation, daily minimum and maximum temperature values and solar radiation. The model consists of 
three unsaturated soil layers, a ground water store and a separate routing water store where surface and 
subsurface runoffs join. In AWRA-L, the lateral distribution of water between the grid cells is ignored when 
it is run in grid-based mode. This constraint limits not only the prediction of stream discharge from large 
catchments in the grid-based mode but also the catchment-based application of this model if the catchment 
size is smaller than 25 km by 25 km.  
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In the original AWRA-L, each grid cell can have more than one HRU.  For the current application, the model 
is modified to have only one HRU per grid cell in order to simplify the parameterization at each grid cell. 
Parameters such as groundwater drainage coefficient and drainage fraction at filled capacity are calculated 
using Budyko’s dryness index, which is the ratio of mean precipitation and mean potential 
evapotranspiration. Landcover specific parameters for HRU are chosen based on the fraction of tree 
coverage. If the tree fraction is greater than 50% of the HRU, its vegetation cover is considered a deep-rooted 
vegetation, otherwise as shallow-rooted vegetation. AWRA-L model has 36 parameters, among which, 32 are 
HRU-specific parameters.  

In this study, 11 HRU specific parameters are selected for calibration (Table 1). The calibration parameters 
are adopted based on the results from variance-based Sobol’s sensitivity analysis (Sobol, 1993), in which the 
total variance of model response is decomposed to provide relative contributions made by individual 
parameters and parameter interactions. Initial values are chosen randomly within the bounds of the 
parameters for the ‘before calibration’ model runs. 

Table 1: Calibration parameters and their range 

Parameter Description  Unit Range 

β Coefficient describing rate of hydraulic conductivity increase with water content - 1-14 

FsEmax  Soil evaporation scaling factor when soil water supply is not limiting evaporation - 0.2-1

h Height of the vegetation  m 0.1-50 

UD0 Maximum root water uptake rates from deep soil  mm d-1 1-7 

US0 Maximum root water uptake rates from shallow soil  mm d-1 1-7 

tgrow Characteristic time scale for vegetation growth towards equilibrium  days 20-1000 

tsenesce Characteristic time scale for vegetation senescence towards equilibrium  days 10-200 

sleaf  Specific canopy rainfall storage capacity per unit leaf area  mm 0.03-0.8 

VC  Vegetation photosynthetic capacity index per unit canopy cover - 0.05-1 

FdrainFC_scale Factor to scale FdrainFC (drainage fraction at field capacity )  - 0.2-5 

FdrainFC_shape Factor to scale FdrainFC - 0.2-5 

2.2 Data 

Daily time series of precipitation, minimum and maximum temperature and solar radiation from January 
2003 to December 2010 derived from AWAP (Australian Water Availability Project) are used as input 
forcing. AWAP is developed by CSIRO Marine and Atmospheric Research (CMAR), BoM and the Bureau 
of Rural Science (BRS) and it is monitoring the state and trend of terrestrial water balance over Australia 
(http://www.csiro.au) using gauge based data. The original AWAP data at a resolution of 0.050 x 0.050 are 
aggregated to the model grid scale 0.250 x 0.250.  

For calibrating AWRA-L, daily estimates of actual evapotranspiration derived from the surface reflectance of 
MODIS-Terra satellite  (Guerschman et al., 2009)  and microwave soil moisture retrievals from C and X 
bands of Advanced Microwave Scanning Radiometer-EOS (AMSR-E) version 5.0 (Su et al., 2013) are used.  
ET data derived from MOD43B4 product of Terra sensor are available from January 2001 to December 
2010. The satellite ET, originally at a resolution of 0.050 x 0.050 (~ 5 km × 5 km) over Australia, is rescaled 
to 0.250 x 0.250 for the current study. AMSR-E soil moisture represents the volumetric water content of the 
top 1-2 cm of the soil at a resolution of 0.250 x 0.250. AMSR-E data from 2002 to 2011are used for 
calibration. Additionally, daily in-situ records of streamflow over the study catchment from January 2003 to 
December 2007 are used for evaluation of the calibration scheme.  

2.3 Model Calibration and Validation 

Instead of using streamflow for calibration, the present study uses satellite retrievals of evapotranspiration 
and microwave soil moisture. The objective function (OBF) is constructed based on the comparison of the 
model derived and satellite estimated evapotranspiration in terms of bias and correlation (see Eq. 1). Since 
the remotely sensed and simulated soil moisture is not in the same measurement scale, correlation between 
them is considered:  
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	ܨܤܱ = 	ܦܧ	 + 	5 ∗ |݈݊(1	 + 	ଶ.ହ|	(ܤ	 		+ 		൫1	 −	ܴாଶ൯ +	൫1	 −	ܴௌெଶ൯,                     (1) 

where B is the Bias, which is the ratio of total model error between the observed and simulated ET and total 
observed ET (Zhang et al., 2011). RE and RSM are the correlation coefficients for evapotranspiration and soil 
moisture respectively:                                            

In equation 1, ED is the Euclidian distance from the ideal point, which is the core of Kling Gupta Efficiency 
(KGE) developed from the decomposition of Nash Sutcliffe efficiency (NSE, Gupta et al., 2009). 
Decomposition of NSE in to different components can help to understand the model performance and can 
give better results during calibration with highly seasonal variables. ED computes the Euclidian distance of 
its three components, γ, α and β, from the optimal point as: ܦܧ =	ඥ(ߛ − 1)ଶ ߙ)	+ − 1)ଶ ߚ)	+ − 1)ଶ,                                                (2) 

where ߙ = 	 ఙೞఙబ and ߚ = 	 ఓೞఓ. σo and σs are the standard deviations of observed and simulated 

evapotranspiration, respectively, while μo and μs stand for the mean of observed and simulated ET. α 
describes the relative variability between the observed and simulated evapotranspiration, γ represents the 
correlation between the observed and simulated evapotranspiration and β is the ratio between the mean of 
modeled and observed ET, which accounts for bias. ED = 0 defines the exact concurrence between the 
observed and modeled data. 

Multi-objective SCE-UA global optimization method is used to derive the optimal parameters of AWRA-L. 
The calibration is conducted for a grid at Kyeamba catchment. The latitude and longitude of the centroid of 
the selected grid cell is -35.3750 and 147.6250, respectively. The tree fraction of the grid cell is 0.25, so 
parameter values corresponding to ‘shallow rooted vegetation’ are used. Eleven parameters shown in Table 1 
are calibrated for the period from 2003 to 2007 and validated from 2008 to 2010. 

In order to avoid the need of routing surface and subsurface runoffs, monthly average of simulated (grid-
specific) AWRA-L discharge is converted to the runoff ratio and it is evaluated against the observed runoff 
ratio generated from the observed discharge. AWAP precipitation is used for determining both observed and 
simulated runoff ratio. For the comparison of AWRA-L and AMSR-E soil moisture, since they are not 
measuring the same vertical thickness and contain various biases, observed soil moisture is rescaled using 
linear regression to the model space for evaluating the calibrated model output.  

3. RESULTS AND DISCUSSIONS 

The aim of this study is to analyse the effect of calibration of AWRA-L model with remotely sensed 
evapotranspiration and top soil moisture on prediction of ET, soil moisture and stream flow. The calibration 
parameters are chosen based on their sensitivity towards evapotranspiration, soil moisture and streamflow. 

The simulated results of evapotranspiration after calibration show a good agreement with the MODIS 
evapotranspiration (Figure 1). Linear correlation coefficient of ET has increased from 0.63 to 0.85 after 
calibration. The comparison between the simulated and MODIS ET is illustrated in Figure 1 for the year 
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Figure 1: Comparison of AWRA-L evapotranspiration before and after calibration with MODIS 
evapotranspiration 
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2007. Simulated ET after calibration is negatively biased during this period, which experienced a long period 
of low rainfall, whereas it is positively biased during period of heavy rainfall.  However, compared to the 
model output of ET before calibration, RMSD (Root Mean Square Deviation) of ET has reduced from 0.95 to 
0.54 after calibration. 

The modeled upper layer soil moisture content after calibration is converted into volumetric soil moisture by 
assuming a field capacity of 40%. Since observed and simulated soil moisture is not in the same definition, 
observed soil moisture is rescaled to the model space for evaluation (Figure 2). After calibrating the model 
the correlation coefficient has shown negligible difference, it infers the passiveness of soil moisture in 
determining the model calibration. The bias between the observed and simulated soil moisture is not 
examined, due to the difference in the scale of measurement. The reason for poor simulation at the lower 
values of soil moisture is likely because of the model soil moisture simulates the upper 5-15 cm and is 
compared with the AMSR-E soil moisture estimated from the upper 1-2 cm of the soil layer. 

The optimum set of parameters obtained after calibration is then incorporated into the model to generate daily 
discharge.  The monthly averaged discharge and monthly averaged AWAP precipitation is used to calculate 
the monthly averaged runoff ratio. Runoff ratio estimated using the calibrated parameters has improved 
compared to the runoff ratio estimated using prior parameters with a decrease in RMSD from 0.042 to 0.033. 
Compared to runoff ratio calculated from observed stream flow, model is overestimating the runoff ratio 
except for the peak flow periods. Initial model estimates of runoff ratio and calibrated model estimates are 
almost similar in all other periods except the peak flow period. During peak flows the calibrated model shows 

Figure 3: Evaluation of AWRA-L runoff ratio before and after calibration with runoff 
ratio derived from streamflow observations 
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Figure 2: Comparison of AWRA-L volumetric soil moisture after calibration with AMSR-E soil moisture 
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improved predictions of runoff ratio. This improvement in runoff ratio after calibration infers the capability 
of the calibration to improve the prediction of streamflow. Evapotranspiration, soil moisture and discharge 
are the components of model water balance, so improvement in evapotranspiration will improve the 
streamflow.   

Validation experiments are done from 2008 to 2010 using the optimum set of parameters.  The results gave a 

good concurrence between the remotely sensed and simulated evapotranspiration (Figure 4) and correlation 
has shown good improvement (Table 1). The satisfactory results during the validation period exhibit 
effectiveness of attained optimal parameters. Modelled soil moisture during validation period shows a little 
improvement in correlation with AMSR-E soil moisture (Figure 5, Table 1).  

Table 1 summarizes the results of calibration and validation for evapotranspiration, soil moisture and runoff 
ratio. The calibration with ET and soil moisture has increased the efficiency in prediction of 
evapotranspiration, whereas, soil moisture did not change considerably with calibration. Monthly runoff ratio 
predictions are improved after calibration. The study is done in only one 25 km grid cell in Kyeamba 
catchment region and evaluated against the streamflow records available for that area. Further study should 
be done to ensure a better prediction of runoff. 

4. CONCLUSIONS 

This study investigates the potential of remotely sensed observations in the calibration of hydrologic/ land 
surface models. MODIS retrievals of evapotranspiration and microwave AMSR-E soil moisture are used to 
calibrate the AWRA-L model. The optimum parameter set obtained is able to give good estimate of ET 
during both calibration and validation period. Top layer soil moisture showed little sensitivity to calibration. 
Calibration with ET and soil moisture improved the predictions of runoff ratio and that illustrates ability of 
the proposed calibration scheme in predicting streamflow. 

This is the first study done in our knowledge, using only satellite retrievals of evapotranspiration and soil 
moisture for calibrating AWRA-L model. More study need to be done to increase the efficiency of 
streamflow prediction with the same calibration scheme using only remotely sensed measurements. Ultimate 
focus of this research is to reduce uncertainty in predictions at ungauged locations by calibration of the model 
with remotely sensed measurements. 
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Figure 5: Comparison of AWRA-L soil 
moisture with AMSR-E soil moisture in 

validation period 

01/2009 04/2009 08/2009 1/2010
0

5

10

15

20

25

30

35

40

45

50

S
oi

l M
oi

st
ur

e 
(%

)

 

 

AWRA-L

AMSR-E

Table 2: Statistics of evapotranspiration and soil moisture before and after calibration and validation 

Statistics 
Initial 

Parameters 
Optimum 

Parameters 
Initial 

Parameters 
Optimum 

Parameters 
Calibration Validation 

Correlation Coefficient (RE) -ET 0.637 0.851 0.585 0.805 

Correlation Coefficient (R) - SM 0.776 0.773 0.718 0.741 

RMSD - ET 0.956 0.540 1.032 0.630 

RMSD – Runoff Ratio 0.042 0.033   
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