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Abstract: This paper evaluates skill of ensemble forecasts of monthly and three-monthly streamflows for 
three catchments from different hydrological regions, using a conceptual hydrological model - the GR4J. The 
latest available POAMA-M24 rainfall predictions for the period of 1980-2008 are downscaled and used as 
forcing inputs of the model to produce streamflow forecasts. In dealing with model uncertainty, 200 
parameter sets derived through BATEA are used for each downscaled rainfall forcing. The results show that 
skill scores are both catchment and season dependent. In the Biggara catchment (SMD region), Jan., Apr., 
and Nov. are the months with the highest skill scores; for the Picnic Crossing catchment (QLD region), the 
best forecasts are for June and July, while for the Tinderry catchment (SEC region), the best forecast months 
are Sept. to Nov. and Feb. as well. The skill scores of monthly steramflow forecasts are higher than that of 
three-monthly forecasts except for reliability. Slight difference between M24-E33 and M24-E99 is found 
when additional forcings with lead times of 1 and 2 months are used in the ensemble forecasting. 
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1. INTRODUCTION 

Ensemble streamflow prediction (ESP) produces multiple streamflow forecasts based on an ensemble of 
meteorological forcings (e.g. rainfall and potential evapotranspiration), each member of the ensemble is a 
possible realization of future weather condition. The ensemble forcings can be that re-sampled conditionally 
from historical records or that downscaled from the GCM outputs [Day, 1985; Wood et al, 2005; Wang et al, 
2011a; Tuteja et al, 2011]. In a comparison with using historical ensemble inputs, Wood et al [2005] showed 
that GCM forecasts for regionally averaged variables did not improve streamflow forecasts in the USA. 
However, during strong ENSO years, forecasts may or may not benefit from using GCM forecasts, 
depending on regions having strong or weak tele-connection with the ENSO. 

As reported in a preliminary investigation on selected catchments in East Australia, the use of the ESP 
approach with historical ensemble forcings showed useful skills for monthly and three-monthly streamflow 
forecasts, especially for the months and seasons following wet seasons [Wang et al, 2011a]. An evaluation of 
the ESP approach with rainfall predictions downscaled from POAMA-P24 (Predictive Ocean Atmosphere 
Model for Australia) indicated that the ESP approach was comparable to those obtained from historical 
ensemble forcings [Wang et al., 2011b].  

POAMA is a state-of-the-art seasonal climate forecast system developed by the Australia Bureau of 
Meteorology based on a coupled ocean/atmosphere model and ocean/atmosphere/land observation 
assimilation systems [Alves et al,. 2003]. The most recent launched POAMA M24 is now available to public. 
The major difference between M24 and its previous version (P24) is that M24 is updated at the frequency of 
10 days (i.e., the model is updated on the 1st, 11th, and 21st days of each calendar month), while the previous 
versions (P15 and P24) are updated at the frequency of one month (i.e., the model is updated at the beginning 
of each calendar month).  

The objective of this paper is to evaluate the skills of ensemble streamflow forecasting by using downscaled 
POAMA M24 rainfall predictions as forcings of a conceptual hydrological model for selected catchments. 
The performance of ESP using M24 is investigated via cross validation. 

2. SELECTED CATCHMENTS 

Three catchments locating at SMD, SEC and QLD in east Australia are selected for this study. The locations 
of the catchments are shown in Fig. 1. Catchment average rainfall data are derived from AWAP (Australian 
Water Availability Project) grid data with about 5 km spatial resolution [Raupach et al., 2009]. The 
inter-annual variation of streamflow of the three catchments shows that Biggara at SMD region is spring 
dominant and Picnic Crossing is summer dominant, whilst the streamflow regime of Tinderry at SEC region 
is uniform.  

 

Figure 1 Locations of the selected catchments 

3. METHODOLOGY 

3.1. Downscaled ensemble forcings 

To predict streamflow using a dynamic hydrological model, the POAMA output rainfall is first downscaled 
to the catchment scale based on a modified statistical analogue method developed by Shao and Li [2013], 
where a two-stage bias correction was applied in conjunction with Timbal’s analogue method [Timbal, 
2008]. The two-stage bias correction method first transforms the non-normal POAMA data to normal 
distribution and the transformed data is then standardized. The method has been proved be able to largely 
retain the correlation between NCEP/NCAR and POAMA data. The downscaled daily rainfall from POAMA 
M24 includes 33 ensemble members for the period 1980-2008 with lead time of zero month. Two ensemble 
streamflow prediction schemes are applied for the monthly streamflow forecast. One of the schemes (E33) 
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includes 33 members of downscaled M24 rainfall with lead time of zero-month, while the other scheme 
(E99) includes 99 members of downscaled M24 rainfall with lead time of 0, 1 and 2 months. For 
three-monthly streamflow forecast, only the E33 scheme is applied owing to the availability of the POAMA 
predictions.  

3.2. Streamflow forecasting 

The GR4J model [Perrin et al., 2003] is used for ensemble streamflow prediction. With the consideration of 
the uncertainty in hydrological model, the GR4J model is firstly run under the BATEA framework to derive 
multiple parameter sets for each prediction period (herein, 200 parameter sets are derived). The initial 
condition of each prediction is generated accordingly using the derived parameter sets and the real rainfall 
before the prediction period. Subsequently, for each ensemble member of forcing, the GR4J model runs 200 
times and produces 200 forecasts of the same period. Therefore, for the E33 schemes the ensemble 
streamflow prediction procedure produces 6,600 forecasts, while for the E99 scheme there are 19,800 
forecasts for every prediction period.  

3.3. Evaluation criteria 

To evaluate the performance of ensemble streamflow forecast using POAMA M24, a leave 5-year out cross 
validation scheme is implemented. In addition to R2 representing correlation between mean of ensemble 
forecast and observed streamflow (1980-2008), the skill scores based on NSEref, RMSEPS and SSCRPS are 
used. The NSEref is defined as: 
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where, trefy ,  is the mean monthly streamflow of the reference period (before 1980), toy ,  is the observed 

streamflow, while mean
tfy ,  is the mean of the ensemble forecasts. The root mean square error in probability 

score (SSRMSEP) proposed by Wang et al. [2009]. The value of SSRMSEP is not larger than 1. The lager 
the SSRMSEP value is, the better the ensemble forecasts is. Negative SSRMSEP means that the ensemble 
forecast performs poorer than the climatology average of the reference period. 

The CRPS is formulated for verification of probabilistic forecasts of continuous variables [e.g., Brown, 1974; 
Matheson and Winkler, 1976; Bouttier, 1994; Hersbach, 2000; Gneiting et al., 2007; Laio and Tamea, 2007; 
Wang et al., 2009]. The equation for calculation of the CRPS for a specified case t is, 
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where t
fF is the forecast probability cdf for the forecast case at t, and t

obsF is the observation expressed as a 

cdf. If the observation is of a specific value, then the corresponding cdf is a single step-function with the step 
from 0 to 1 at the observed value of the variable. Therefore, the expression of CRPS can be rewritten as, 
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with H( ) is the Heaviside function. CRPS can be regarded as the total area between the cdf of the 
probabilistic forecasts and the cdf of the observation. The minimum CRPS value of zero is achieved only in 
the case of a perfect single value forecast. A skill score based on CRPS is then defined as [Wang et al., 2009] 

t
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where tCRPS  is the average CRPS of all forecast cases, t
refCRPS  is the average of CRPS when a 

reference probabilistic forecast )(~ tt
ref

t yFy  is used. It is obvious that the skill score for reference 

probabilistic forecasts is zero, while SSCRPS reaches to 1 for perfect forecast.  

The probability integral transform (PIT) is often used to evaluate the reliability of the ensemble forecasts. 
The PIT plot is useful for indicating whether the forecast probability distributions are predicted too high or 
too low, or too wide or narrow [Laio and Tamea, 2007; Thyer et al., 2009]. Given a probabilistic 

forecast )(~ tt
f

t yFy , a probability integral transform can be applied to the observed value yo to give  

)( ,to
t
ft yF=π         (6) 

where the function t
fF is derived from all ensemble forecast members at case t. For an ideal forecast, 

tπ should be uniformly distributed. The uniformity can be checked by pooling together tπ values for all the 

forecast cases t = 1,2, . . ., n, and displaying the ranked tπ values in a uniform probability plot with the 

Kolmogorov-Smirnov confidence bands. For the convenience of comparison, the significance level of the 
band is accepted herein as an indicator for the uniformity test, which is given as: 

)(1 maxDnxPAlpha k <−=        (7) 

where x is a random variable of Kolmogorov distribution (Pk), n is the sample size of tπ , and Dmax is the 

maximum distance between the tπ values and the diagonal line in a PIT plot. If iπ ′ is the series ranked 

ascending of tπ , and the empirical probability is i/n, then 

 niniD t
i ,...,2,1,/supmax =−= π       (8) 

According to the definition, a smaller Dmax means that tπ  is closer to uniform distribution at a higher 

significance level Alpha and therefore the ensemble forecasts are more reliable. Alpha varies in (0, 1). For 

significance level Alpha=0.05, the critical value nDc /36.1= , which implicates that PIT plot is within 

the band of width ±Dc with probability of 95%. 

 
Figure 2 Forecasting skills of monthly and 3-monthly streamflow. M24-E33 and M24-E99 stand for POAMA 

M24 with 33 and 99 ensemble forcings respectively. 

4. RESULTS 

4.1. Skill scores of monthly forecasts 

Fig. 2 shows the forecasting skills of the monthly streamflows generated using downscaled POAMA M24 as 
ensemble forcings for the GR4J model. For the forecasting scheme M24-E33 and M24-E99, no significant 
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difference of skill score is found, indicating that the additional forcings with lead time 1 and 2 month do not 
improve the forecasting skill. The NSEref of most months and catchments (94.4%) are larger than 0, meaning 
that the forecasts are better than reference predictions by climatology mean. The proportion of months and 
catchments with useful skills of forecasts (NSEref≥0.2) is around 80.6%. The mean value of those 
months×catchments with NSEref>0 reaches to 0.48. In term of correlation coefficient (R2) larger than 0.355 
(significance level of 0.05), the proportion of months×catchments is around 50%. The mean SSRMSEP of all 
months×catchments reaches to 0.40. For most months of the three catchments, the SSRMSEP values are all 
larger than 0, again indicating a better performance than climatology mean. This is further proved in SSCRPS 
shown at Fig.2, where the mean SSCRPS of all months×catchments reaches to 0.38. The reliability of the 
ensemble forecasts in term of the Alpha shows that the distribution of the forecasts is reasonable only in 
some months of the catchments (27.8%). Most of the months and catchments have an Alpha value less than 
0.05, meaning that the PIT values do not lie within the Kolmogorov 5% significance bands, and the 
probability distributions of the forecasts may be biased or with a spread that is too high or too low, or too 
wide or too narrow. Fig.3 provides a comparison of forecast median and [0.05, 0.95] quantile range with 
observed value for individual cases. It appears that the forecast median is consistent with the observed value 
for Biggara at SMD region. For Picnic Crossing at QLD and Tinderry at SEC, however, the observed values 
show to be out of the range when the observed monthly streamflow is higher than a threshold, indicating a 
forecast bias in high flow months. 
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igure 3 Monthly streamflow forecast quantiles and observed value plotted according to forecast median 
(M24-E33) 

It can also be seen at Fig.2, the skill scores are both catchment and season dependent. Among the three 
catchments, Biggara at the SMD region shows the highest skill scores for monthly streamflow forecasts, 
while Picnic Crossing at QLD region is the catchment with the lowest skill scores. In Biggara, both the 
NSEref and SSRMSEP for Aug. to Oct. are lower than the other months. However, the months with smaller 
R2 and SSCRPS are May and June. In term of reliability based on Alpha, the scores of Jan., Jun., Aug., Nov. 
and Dec. are all higher than 0.05. For Picnic Crossing at QLD, Mar. to Jul. has higher skill scores than other 
months, but reliable forecasts are only in Apr., May and Jul. For Tinderry at the SEC region, the median of 
the ensemble forecasts show significant correlation with the observed monthly streamflow in May, Sept. and 
Dec., where R2 are all higher than 0.355. However, NSEref, SSRMSEPS and SSCRPS of Tinderry in all 
months are all positive, indicating that the ensemble forecast is much better than the climatology mean. It is 
obvious that the ensemble forecast is more reliable for June and July, where a higher Alpha value is found. 

4.2. Skill scores of 3-monthly forecasts 

Fig. 2 shows also the skill scores of the forecasts of three-monthly streamflow totals using downscaled 
POAMA M24. The proportions of seasons×catchments with NSEref>0, NSEref≥0.2 and R2>0.355 are 83.3%, 
69.4% and 25.0% respectively, while the means of NSEref>0, SSRMSEP and SSCRPS are 0.35, 0.28 and 
0.35 respectively. The ratio of Alpha≥0.05 is around 33.3%. It can be seen clearly that the skill scores of 
three-monthly streamflow forecasts are all lower than that of monthly streamlfow forecast except for the 
reliability based on Alpha, indicating that three-monthly forecasts have lower accuracy but higher reliability 
than monthly streamflow forecasts. However, as shown in Fig.4, it is similar to monthly streamflow forecast 
that the forecast median appears to be consistent with the observed value for Biggara, but the forecasts tend 
to be bias for wet seasons in Picnic Crossing and Tinderry. 

In Fig.2, we can also find the difference of skill scores of 3-monthly streamflow forecasts among catchments 
and seasons. For the three catchments, Biggara has the higher R2 value than the other two catchments, but the 
ensemble forecasts of Tinderry perform best in terms of NSEref, SSRMSEP and SSCRPS, followed by that of 

2803



Zheng et al., Evaluation of Downscaled POAMA M24 for Monthly and 3-Monthly Streamfow Forecasts 

Biggara. The improvements of skill scores in Tinderry by using ESP over climatology mean are larger than 
the other two catchments. For Biggara at the SMD region, the mean NSEref, R

2, SSRMSEP and SSCRPS of 
all seasons are 0.408, 0.373, 0.268 and 0.215 respectively, but the season ASO has negative NSEref and 
SSRMSEP. In term of Alpha, the seasons with higher reliability of forecast at Biggara are JFM, JJA, NDJ 
and DJF. For Picnic Crossing at QLD region (Fig.2), the three-monthly forecasts in Oct. to Apr. all have 
negative NSEref values and relative lower value of R2, SSRMSEP and SSCRPS, indicating a poorer forecast 
than climatology mean. The seasons of JJA and JAS have rather high scores of NSEref, R

2, SSRMSPES and 
SSCRPS, but not for the reliability indicator Alpha. Those seasons with reliable forecast are MAM, AMJ and 
OND. For Tinderry at SEC region, R2 of all seasons are lower than 0.355, implying that the correlation 
between forecasts and observed is not significant. However, NSEref, SSRMSEP and SSCRPS of most months 
are positive, meaning that the ensemble forecast median is better than climatology mean. The reliable 
three-monthly streamflow forecasts in Tinderry are that of Mar. to Aug. and NDJ. 
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Figure 4 Three-monthly streamflow forecast quantiles and observed value plotted according to forecast 
median (M24-E33) 

5. CONCLUSIONS 

In this paper, the downscaled POAMA M24 rainfall is used as input for the GR4J model to forecast the 
monthly and three-monthly total streamflows in three selected catchments covering different hydrological 
regions. The model is run on the period 1980 to 2008 in the mode of cross-validation with 200 parameter sets 
derived through BATEA framework. The accuracy and reliability of the forecast are evaluated based on skill 
scores including NSEref, R

2, SSRMSEP, SSCRPS and reliability in Alpha.  

The results show that ensemble streamflow forecasting approach based on conceptual rainfall-runoff model 
with forcings from downscaled POAMA M24 provides a potential way for monthly and three-monthly 
streamflow forecasting. The skill scores of the ensemble forecasting are better than forecast based on 
climatology mean. However, the forecasting skills are both catchment and month/season dependent. It is also 
found that the skill scores of monthly steramflow forecasts are higher than that of three-monthly forecasts 
except for the reliability of the forecasts. The comparison of forecast scheme using different downscaled 
POAMA M24 ensemble numbers shows that additional forcings with lead time 1 and 2 month do not 
improve the forecasting skill of monthly streamflow. 
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