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Abstract: As part of the Commonwealth Department of Agriculture, Fisheries and Forestry’s (DAFF’s) 
‘Australia’s Farming Futures Climate Change Research Program’ (CCRP), the Queensland Government 
undertook a project to support the climate data requirements for nine climate adaptation studies. The project, 
known as Consistent Climate Scenarios (CCS), delivered climate change projections data, in consistent 
model-ready formats, enabling project teams to undertake climate change adaptation studies for various 
primary industries across Australia, in particular within the grazing, cropping and horticultural sectors. 
Statistical approaches were developed to transform historical climate data from the Queensland 
Government’s SILO climate database using climate projections modelling from the Intergovernmental Panel 
on Climate Change (IPCC), Fourth Assessment Report (AR4). All IPCC AR4 models from the Third Climate 
Model Intercomparison Project (CMIP3) were ranked by an Expert Panel overseeing the CCS project.  
Ranking was based on model performance over the Australian region using, as a guide, methods developed 
by Suppiah, et al. (2007) and Smith & Chandler (2010). Of 23 available models, four were omitted as 
underperforming, and the remaining models were used to develop the CCS projections data. Over 1 million 
data files were delivered to the CCRP project teams. These projections data are now available to the wider 
research community as an adjunct to SILO.  Registered users can obtain ‘CCS data’ at 
http://longpaddock.qld.gov.au/climateprojections. 

Two different techniques are used to modify the daily observed climate values extracted from the SILO 
database (http://longpaddock.qld.gov.au/silo) using trends obtained from global climate models (GCMs). The 
two techniques are monthly change factors (CF) derived by pattern scaling from GCMs, and quantile 
matching (QM).  The CF technique projects trends in mean values whereas the QM technique projects both 
the mean and internal variability within climate sequences. The initial CF trend data were obtained from 
CSIRO and constituted the monthly trends interpolated to 25 km grids by OzClim ™ 
(http://www.csiro.au/ozclim). This set included trends in maximum and minimum temperatures for only 
seven required GCMs, and did not include specific humidity for five GCMs, or solar radiation for two. 
Estimation techniques, using the combination of machine learning and regression techniques 
(Ricketts&Carter 2011) were used to estimate missing variables. The UK Met-Office has also made available 
maximum and minimum temperature, and specific humidity files for the HadCM3 and HadGEM1 models, 
which had not been available to CSIRO from the IPCC’s repository at PCMDI (http://www-pcmdi.llnl.gov/). 
The QM methodology (Li, Sheffield & Wood 2010, Kokic, Jin & Crimp 2012, Kokic, Jin & Crimp 2013) 
was developed in conjunction with CSIRO. Two variations of QM are described in these papers, one which 
requires daily data from the GCM (which is only available from a very small subset of GCMs) and one which 
uses monthly GCM data.   

Data generated by the methods described may be downloaded after registration, currently at no additional 
cost from the web site. Users may request up to ten datasets at a time, selected from SILO’s 4759 available 
patched point stations, projected to either 2030 or 2050, based on six SRES scenarios and two stabilization 
scenarios, and three different climate sensitivities. They receive projection files in a choice of two formats, 
plus additional data (e.g. CO2 concentrations, diagnostic plots and a comprehensive user guide). In addition 
to the nine CCRP projects, more than 120,000 files have been downloaded from this web site in the 2012/13 
financial year to eight Australian universities and a number of state bodies and consultancies. 

Keywords: climate change projections, SILO, consistent climate scenarios (CCS), pattern scaling, 
quantile matching 
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1. INTRODUCTION 

Biophysical modelling of the type performed for agricultural modelling may require detailed, daily weather 
information, both for calibration and for predictive/projective explorations. Rainfall, temperature, and water 
vapour related variables are, in general, the most crucial variables. Explorations of the range of potential 
impacts of climate change in the agricultural sector are often performed by comparing the outputs of a 
biophysical model driven by daily climate from a selected historical period, to those of the same model 
driven by simulated climate as it may be in the future. It was thus seen as beneficial to make data available to 
all related CCRP projects, from a single source, using a common suite of methods. This relieved the projects 
of the need to independently develop methods, at the same time increasing inter-project consistency.   

An Expert Panel was formed from stakeholders, QCCCE, and CSIRO staff to consider the range of possible 
approaches to the task of estimating future daily climate suited to input into biophysical modelling. The 
approach agreed on was to provide historical daily climate from SILO, and to derive information about 
possible future climates from a selected suite of global climate models (GCMs) taken from those made 
available via the Intergovernmental Panel on Climate Change (IPCC) for the IPCC Fourth Assessment 
Report (AR4) as part of the Third Climate Model Intercomparison Program (CMIP3).  

This paper outlines: 1) the rationale for the design and methods chosen (Section 2); 2) how these methods 
were employed to develop projections data within the CCS framework (Section 3); and 3) how the project 
addressed the issues of GCM selection (Section 4). 

2. SELECTION OF METHODS AND DATA 

2.1. The SILO Database 

The SILO climate database (Jeffrey et al. 2001) was developed during the 1990s by Queensland Government 
in conjunction with the Bureau of Meteorology (BoM) in order to provide historical climate data to 
biophysical modellers in ready to use formats. Currently SILO is hosted, maintained and made available 
through Queensland Government, at http://longpaddock.qld.gov.au/silo. Fifteen observed and derived climate 
variables are available, including temperature, rainfall, water vapour variables, and estimates of a number of 
Morton’s evapotranspiration functions (Morton 1986). Wind related variables are not currently available. 
Five climate variables from SILO are currently used by the CCS system. 

2.2. Climate Models 

Models were selected and ranked by the expert panel using two model comparison papers (Suppiah, 
Hennessy & Whetton 2007) and (Smith & Chandler 2010) which both assigned scores to GCMs based on 
their performance in providing representations of features of broad-scale climatology over Australia (e.g. El 
Nino Southern Oscillation index ENSO). Of 23 available models, four were omitted as underperforming. 

2.3. SRES Scenarios 

21st century runs for all of the GCMs in AR4, were forced by the prescribed forcings described in the Special 
Report on Emissions Scenarios (SRES) (Nakićenović & Swart 2000). Six SRES scenarios are commonly 
used, and provide a range of emission trajectories based on broad assumptions about regional versus global 
economic growth and economic versus environmental focus. GCM runs available via CMIP3 generally only 
include output one or two of the six SRES scenarios, so a method known as pattern scaling is used, based on 
two assumptions explained below. 

Since every GCM develops its own global responses, a simple climate model (SCM) is used to estimate a 
standardised global temperature response for each SRES scenario. As implemented, pattern scaling uses an 
SCM called MAGICC (http://www.cgd.ucar.edu/cas/wigley/magicc/). Although each scenario produces 
different trajectories especially in the second half, at the end of the 21st Century the six scenarios produce a 
range of mean global temperatures, with medians ranked from lowest to highest as, B1,  A1T, B2, A1B, A2, 
A1FI. Another parameter, known as “climate sensitivity”, is also computed from MAGICC output to cover 
the range of uncertainties in the response of the SCM to emissions. Temperature curves computed by 
MAGICC for three climate sensitivities (median, 10th and 90th percentile) from forcings prescribed in the six 
SRES scenarios above, plus two stabilization scenarios (WRE450 and WRE550) are used to provide mean 
global warming values for each year in the 21st century. 
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2.4. Pattern Scaling 

Pattern scaling was introduced by Santer et al. (1990) for the first IPCC assessment report, and has been 
refined ever since (Mitchell et al. 1999, Mitchell 2003). According to Mitchell (2003) pattern scaling is based 
on two assumptions. “Assumption 1. The SCM accurately represents the global climate response of the 
GCM, even when the response is non-linear.  … Assumption 2. The responses to radiative forcing – as 
represented by a GCM – of a wide range of climatic variables, at local and seasonal scales, are a linear 
function of the amount of global warming – as represented by the same GCM”. The form of pattern scaling 
used in this work is identical to CSIRO’s OzClim™ product, previously documented in Whetton & Hennessy 
(2001) and Ricketts & Page (2007). The term “pattern” refers to the spatial pattern of change shown by a 
GCM, derived by estimating a trend in a climate variable against some time dependent variable (and not 
necessarily time itself). In this work the regressed independent variable is mean annual global temperature for 
each individual GCM for the matching scenario (A1B chosen for completeness) and the dependent variables 
are the monthly averages of climate variables of choice.  The analysis is taken over the 21st Century, where a 
separate regression is performed at every grid-point in the GCM. One pattern of change is produced for each 
month, for each GCM, and for each variable. Thus we can project a pattern of deltas (change factors), simply 
by multiplying the pattern of change by the mean global temperature projected at some future date. Since 
mean rainfall over continental Australia shows enormous variation across GCMs it is usual to normalise the 
pattern of change by the mean rainfall for a reference period, in this case years 1975-2004 (see Figure 1).  

  

Figure 1: Illustrating the inter-GCM variation in mean annual rainfall over continental Australia. The GCMs 
shown MIROC_Medres (left pane) and GISS_AOM (right pane) on common axes. Observed rainfall is 

plotted in magenta, 20th century modelled rainfall in blue and 21st century modelled rainfall in red. Maps are 
normalised patterns (red to blue represents changes of -40% to +40% of 1975 to 2004 mean) of annual 21st 

century rainfall trends for the GCMs. 

2.5. Quantile matching 

A considerable number of reports have utilised pattern scaling to obtain long term trends in monthly 
climatology and then apply this to either monthly mean, or daily observations, to produce estimates of 
climate change impacts.  Li et al. (2010) proposed a method of quantile matching (QM) to map the 
probability distribution function (PDF) of a target variable onto a projected future PDF, and then replacement 
of each observed value with the value from the same quantile in the perturbed PDF. Using both a pattern 
scaling based approach and QM, information from the observations is blended with information from GCMs 
to produce plausible future climate. Where they differ is in precisely which statistical components are derived 
from GCMs and which from observations.   

3. DEVELOPING PROJECTIONS FOR ‘CONSISTENT CLIMATE SCENARIOS’ 

The decision on how to combine present day observed climate with model based projections of future climate 
considered the requirements of the range of likely client biophysical models. Important factors identified 
included: (a) the need to consider the detailed relationship between rainfall, water vapour variables, solar 
radiation and temperature variables; (b) the fact that for most GCMs only monthly values were available; and 
(c) that for all GCMs climate variables are represented as coarse scale spatial averages (typically 100-200 km 
per grid point). Thus, the problem is one of imputing changes in fine scale daily climate, given changes in 
coarse scale monthly climate, in such a way that the resulting outputs are plausible and weather-like. It is 
highly desirable that such results have both spatial and temporal integrity, and coherence, and especially that 
the present to future transitions contain no discontinuities. Since the observational record is the only source 
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of information about daily temporal and spatial weather coherence, these patterns represent the best available 
source of plausible future climate patterns.   Under the pattern scaling approach used, known as the change 
factor (CF) approach, all observed values within a month are shifted by a single, uniformly applied value 
derived from a GCM. Thus, the mean is altered, but the variance and shape of the probability distributions 
(PDFs) are unaltered from the historical observed data. Under QM, an attempt is made to estimate the change 
in shape of the PDFs in the future. Changes in means are derived from GCMs as per the CF approach, but 
changes in variance and PDFs can be derived either by extrapolation of the observations or calculated from 
the GCMs.  

3.1. Change Factors 

The CF approach uses pattern scaling to estimate change factors which are then used to adjust the observed 
climate variables to produce projected climate. The initial CF trend data were obtained from CSIRO and 
constituted the monthly trends interpolated to 25 km grids by OzClim ™ (http://www.csiro.au/ozclim). This 
set included trends in maximum and minimum temperatures for only seven required GCMs, and did not 
include specific humidity for five GCMs, or solar radiation for two. Estimation techniques, using the 
combination of machine learning and regression techniques (Ricketts&Carter 2011) were used to estimate 
missing variables. The UK Met-Office has also made available maximum and minimum temperature, and 
specific humidity files for the HadCM3 and HadGEM1 models, which had not been available to CSIRO from 
the IPCC’s repository at PCMDI (http://www-pcmdi.llnl.gov/). 

3.2. Quantile Matching 

The quantile matching methodology (QM) (Li, Sheffield & Wood 2010, Kokic, Jin & Crimp 2012, Kokic, 
Jin & Crimp 2013) was developed in conjunction with CSIRO. Two variations of QM were produced, one 
which uses monthly GCM data and one which requires daily rainfall from the GCM (which is only available 
for the required dates from a very small subset of GCMs, and even then, not for all the desired climate 
variables).  

 

Figure 2:  Quantile trend plot for September daily maximum temperature, showing how quantiles 0.1,0.5 and 
0.9 are computed for 2030 (the computed quantiles are referred to here as the pivot quantiles). 

The main points of the QM approach are explained in Sections 2.1 to 2.2 of Kokic et al. (2013), however the 
approach used in CCS varies from this paper by not using bootstrapping. Instead, a single simulation of 
projected daily climate is produced by sequentially processing the training data using the QM algorithm. The 
QM method produces projected daily data for the future by mapping historical cumulative distribution 
functions (CDFs), sourced from a 1957 to 2010 training period, to a projected future CDF.  A variation in the 
QM method is used, depending on whether projections for 2030 or 2050 are required. Different methods are 
required as there is almost no daily data for GCMs around 2030.  In addition, even where data do exist, no 
GCM daily data for surface water vapour and solar radiation are available. 

For 2030, the future CDF is estimated by the forward projection of historical trends in monthly quantiles out 
to that year (Figure 2).   There is a risk that historically-based quantile trends may meet or cross each other at 
some point in time which is dealt with in code but reduces precision. Beyond 2030 the effect was found to be 
unacceptable. Therefore, to acquire 2050 projections datasets, future CDFs for rainfall and temperature 
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variables have been computed differently, using daily data obtained from GCMs instead of extrapolating 
historical quantile trends. Once the projected quantiles are determined, daily observations are projected by 
‘matching’, month by month, their quantile ranks in the future with their quantile ranks in the training period. 
A residual correction also needs to be applied because of the difference between the quantiles obtained from 
the linear trend line and the empirical quantiles (Kokic, Jin & Crimp 2013). Finally the projected data is 
shifted so its monthly mean levels match those obtained by the CF approach. While the approach for 2050 
rainfall and temperature projections uses daily GCM data, QM 2050 projections for other climate variables 
use the QM 2030 method extended to 2050. 

 

 

 

Figure 3:  Two sample diagnostic plots. Left: Comparison of model projections plot for 2030 for Douglas 
River (Location Code 014901) in Northern Territory. Plot generated using Version 1.2 projections data 

climate ‘Change factors’ for GCMs forced by the A1B emissions scenario. Right: Minimum temperature 
information displayed in a histogram of ‘Quantile-matched’ (QM) projections data for Augusts for a specific 
location, showing differences between the observed 1957 to 2010 baseline climate and 2030 QM projection 
of the data. This plot shows a positive shift in the QM frequency distribution. The blue semi circles on the x-

axis represent projected 10th, 50th and 90th percentile values of the mean daily minimum temperature for 
2030, using QM trends.  Observed 1957-2010 and projected 2030 means and corresponding standard 

deviations are presented in the top right panel. 

3.3. Composite Models 

The issue of Global Climate Model (GCM) selection is an important one and various views exist as to the 
best approach to take. It is desirable that end-users can relate their results, based on their choice of GCMs, to 
the results from another user who has chosen a different set of GCMs - particularly if the results differ. The 
CCS system potentially produces a large number of outputs (any combination of 19 models, eight scenarios 
and three climate sensitivities) which can be difficult for modellers to process and communicate. To reduce 
the number of models needing to be run a model compositing approach based on the work of Watterson 
(2012) was adopted.  This approach describes how projected Australian 21st Century rainfall responses for 
the range of CMIP3 GCMs may be clustered according to, global warming sensitivity, and East Indian versus 
West Pacific Ocean temperature responses. The GCM  responses can be split into four Representative Future 
Climate (RFC) partitions:  

• HI:  A high level of global warming, where the Eastern Indian Ocean warms faster than the Western 
Pacific Ocean. 

• HP:  A high level of global warming, where the Western Pacific Ocean warms faster than Eastern Indian 
Ocean. 

• WI:  A low level of global warming, where the Eastern Indian Ocean warms fasters than Western Pacific 
Ocean. 

• WP:  A low level of global warming, where the Western Pacific Ocean warms fasters than Eastern 
Indian Ocean. 

Four composite models composed from the members of the 19 preferred GCMs (see Figure 4) that fall into 
each group have been provided for users who wish to sample a diverse range of possible climate futures 
without necessarily requiring specific models.  

3.4. Diagnostics 

When ordering projections data, the user has an option to select ‘diagnostics’. If diagnostics is selected, the 
user will receive the following plots, which can also be used with or independently of the projections 
datasets: 
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• historical time series plots;  
• comparison of model projections plots (showing change in rainfall and temperature at 2030 for 19 

GCMs based on ‘Change factors’); 
• monthly quantile trend plots, for selected climate variables (QM only); and 
• histograms showing historical and ‘Quantile-matched’ distributions for each climate variable (QM 

only). 
Sample frequency distribution plots (based on CF projections) can be requested by contacting us directly. 

4. WEB INTERFACE 

User registration is performed via (http://longpaddock.qld.gov.au/climateprojections/registration.php). The 
data request process is a guided one. One innovative control is the GCM selection control (Figure 4) which 
provides considerable feedback. The GCMs are shown clustered according to Watterson (2012), GCMs are 
also show in a checkbox list as ranked by the expert panel with the four composites at the bottom. Patterns of 
change and summary statements are shown dynamically on the right hand side. 

 

Figure 4: Selection of GCMs. The left hand panel is a control adapted with permission from (Watterson 
2012) and allows users to select a GCM, or one of the composites, whilst viewing an annual pattern of 

change in the right hand panel. It acts as a combination of selection tool and review tool. Users may select 
GCMs from the check boxes. 

5. DISCUSSION AND CONCLUSIONS 

This framework is believed to be the first of its kind in Australia. The aim of the CCS project was to provide 
ready to use consistently prepared climate change data sets for use in biophysical modeling. While there are 
many possible methodologies available for providing daily data we have chosen simple methods that 
preserve historical weather-like patterns and thereby possibly preserving calibration parameters in some crop 
and pasture models. In the future the challenge will be to produce similar datasets from AR5 GCM runs and 
elaborate the QM methodology. However, we caution that limits inherent in the assumption of pattern scaling 
methodologies may in some cases have significant impact on data integrity. 

ACKNOWLEDGMENTS 

The Consistent Climate Scenarios project was funded by Commonwealth Department of Agriculture, 
Fisheries and Forestry under their Australia’s Farming Future Climate Change Research Program. We thank 
the Expert Advisory Panel for providing project information and oversight. 

2790



Ricketts et al. Consistent Climate Scenarios: Projecting representative future climate from GCMs and SILO 

REFERENCES 

Jeffrey, SJ, Carter, JO, Moodie, KB & Beswick, AR 2001, 'Using spatial interpolation to construct a 
comprehensive archive of Australian climate data', Environmental Modelling and Software, vol. 16, no. 
4, pp. 309-330.  

Kokic, P, Jin, H & Crimp, S 2012, "Statistical Forecasts of Observational Climate Data. Extended Abstract", 
International conference on “Opportunities and Challenges in Monsoon Prediction in a Changing 
Climate” (OCHAMP-2012).  

Kokic, P, Jin, H & Crimp, S 2013, 'Improved point scale climate projections using a block bootstrap 
simulation and quantile matching method', Climate Dynamics, 41, pp. 853-866.  

Li, H, Sheffield, J & Wood, EF 2010, 'Bias correction of monthly precipitation and temperature fields from 
Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching', Journal 
of Geophysical Research D: Atmospheres, vol. 115, no. 10.  

Mitchell, JFB, Johns, TC, Eagles, M, Ingram, WJ & Davis, RA 1999, Towards the Construction of Climate 
Change Scenarios, Springer Netherlands.  

Mitchell, TD 2003, 'Pattern Scaling. An Examination of the Accuracy of the Technique for Describing Future 
Climates', Climatic Change, vol. 60, no. 3, pp. 217-242.  

Morton, FI 1986, 'Practical estimates of lake evaporation.', Journal of Climate & Applied Meteorology, vol. 
25, no. 3, pp. 371-387.  

Nakićenović, N & Swart, R (eds) 2000, Special Report on Emissions Scenarios: A special report of Working 
Group III of the Intergovernmental Panel on Climate Change, IPCC.  

Ricketts, JH & Page, CM 2007, "A Web Based Version of OzClim for Exploring Climate Change Impacts 
and Risks in the Australian Region", MODSIM 2007 - 17th International Congress on Modelling and 
Simulation, December 2007, pp. 560-566.  

Ricketts, JH & Carter, JO 2011, "Estimating trends in monthly maximum and minimum temperatures in 
GCMs for which these data are not archived", MODSIM 2011 - 19th International Congress on 
Modelling and Simulation - Sustaining Our Future: Understanding and Living with Uncertainty, pp. 
2768-2774.  

Santer, BD, Wigley, TML, Schlesinger, ME & and Mitchell, JFB 1990, Developing Climate Scenarios from 
Equilibrium GCM Results, Hamburg.  

Smith, I & Chandler, E 2010, 'Refining rainfall projections for the Murray Darling Basin of south-east 
Australia-the effect of sampling model results based on performance', Climatic Change, vol. 102, no. 3, 
pp. 377-393.  

Suppiah, R, Hennessy, KJ & Whetton, PH 2007, "A comparison of Australian climate change projections 
based on IPCC TAR and AR4 climate model simulations", MODSIM07 - Land, Water and 
Environmental Management: Integrated Systems for Sustainability, Proceedings, pp. 518.  

Watterson, IG 2012, 'Understanding and partitioning future climates for Australian regions from CMIP3 
using ocean warming indices', Climatic Change, vol. 111, no. 3, pp. 903-922.  

Whetton, PH & Hennessy, KJ 2001, "Climate Change Projections for the Australian Region", MODSIM 2001 
International Congress on Modelling and Simulation, eds. F. Ghassemi, P. Whetton, R. Little & M. 
Littleboy, pp. 647.  

2791




