
Long Term Water Demand Forecasting: Use of Monte 
Carlo Cross Validation for the Best Model Selection 

Md Mahmudul Haque a, Khaled Haddada, Ataur Rahman a, Mohammed Hossaina, Dharma Hagare a 
and Golam Kibria b 

a School of Computing, Engineering and Mathematics, University of Western Sydney, Australia 
b Sydney Catchment Authority, Penrith, NSW, Australia 

E-mail: a.rahman@uws.edu.au 

Abstract: Selection and validation of any statistical models are very crucial in modelling and forecasting 
problems. In multiple regression analysis of forecasting long term water demand, various models are 
developed with a variety of predictor variables. Moreover, multiple regression models can take different 
forms such as linear, semi-log and log-log. In this paper, an effective but simple procedure named Monte 
Carlo cross validation (MCCV) is applied and compared to the most widely used leave-one-out validation 
(LOO) to select the best multiple regression model to forecast water demand. Unlike LOO validation, MCCV 
leaves out a major part of the sample during validation. Both methods are also used for estimating the 
prediction ability of the selected model on future samples. The advantage of MCCV is that it can reduce the 
risk of over fitting the model by avoiding an unnecessary large model. In this paper, MCCV and LOO are 
applied to the water demand data set for the Blue Mountains, NSW in Australia for single dwelling 
residential sector. The results show that MCCV has the ability to select an appropriate water demand 
forecasting model. It is also found that, MCCV assesses the prediction ability of the selected model with a 
higher degree of accuracy. Furthermore, the model selected by MCCV provides less uncertainty when 
forecasting long term water demand. 
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1. INTRODUCTION 

Water supply and demand has become a major concern in many countries around the world due to decreasing 
water resources as a result of growing population, economic development and changing climate (McFarlane 
et al., 2012). The scarcity problem is more severe in regions experiencing reduced rainfall and increased 
temperature due to anthropogenic global warming. This has led to a need for better planning and designing of 
water supply systems, implementing system expansion, developing and managing water resources. Various 
water authorities have also considered alternative water resources such as rainwater tanks (Eroksuz and 
Rahman, 2010; Imteaz et al., 2011) and desalination plants (Ghaffour et al., 2013) as a means of enhancing 
water security. A vital component in planning, development and management of water supply systems 
including desalination plants is the accurate prediction of long term water demand (Jain et al., 2001). 
Accurately forecasted long term water demand is required to efficiently allocate water supplies among 
competing water users.  Moreover, long term forecasting is helpful in assessing the effect of various 
conservation measures and taking suitable decisions on the development of policies and strategies for 
demand management.  

Probabilistic approaches are the most widely used models and can be adopted to quantify the uncertainties in 
water demand prediction due to the stochastic nature of predictor variables. The number of predictor 
variables associated with this analysis are often large and can be correlated (i.e. multicollinearity), which 
cannot be accounted for explicitly by simple regression analysis. As such in forecasting long term water 
demand it still needs to be resolved (i) which set of the predictor variables are the best suited or the most 
optimal for inclusion in the final regression equation without over fitting the model; and (ii) which of the 
many candidate models is the most parsimonious one for making the most reliable prediction for the future 
samples, as addition of unnecessary predictor variables often leads to weaker models (e.g. producing greater 
uncertainty). There are so many different methodologies for model development and validation, during the 
last twenty years, the application of different validation methods has been widely examined in different fields 
of sciences such as Chemometrics (Faber and Kowalski, 1997 and Song Xu et al., 2005),  Econometrics 
(Racine, 2000) and Hydrology (Haddad et al., 2013). In this study, a Monte Carlo cross validation (MCCV) 
technique is adopted for model development and validation. The analysis is carried out as follows: (1) 
Comparison of the MCCV with the most commonly applied leave-one-out (LOO) validation for selecting the 
most parsimonious regression model to be applied to estimate future samples, (2) Demonstration of the 
application of the MCCV method in long term water demand forecasting.  

2. MATHEMATICAL FORMULATION 

Let us assume a dataset of n data points with p potential predictor variables xi1, xi2,…, xip (such as rainfall, 
mean maximum temperature) and a response variable yi (i = 1, 2,…, n) which can be the monthly per 
dwelling water use. The relationship between the response and predictor variables is often assumed to be 
linear. There are a few assumptions made on the data in long term water demand forecasting regression; for 
instance, the dataset are representative of the regression relationship to be developed and the random errors 
are homoscedastic. The ordinary least squares based regression (OLSR) model assumes that the quantity of 
interest yi at a given point in time i can be described by a linear function of predictor variables (or a 
transformation there of, such as log-linear) with an additive error. In matrix notation, the model can be 
written as: 

εXβy +=                                                                                                                                                         (1) 

where y = (y1, y2,…,yn)
T is the response vector of the statistic of interest (the superscript ‘T’ denotes the 

transpose), X is a (n × p) matrix of predictor variables augmented by a column of ones, β is a (p × 1) vector 
of regression parameters that must be estimated and ε is an (n × 1) vector of random errors for each of the n 
data points used in the regression analysis, which is assumed to be normally distributed with zero mean and 
the covariance matrix of the form:  

I)E( 2σεε T                                                                                                                                                         (2)                             

where 2σ is the model error variance and I is equal to the identity matrix. In the regression problem, the true 
β values (i.e. the regression coefficients) are unknown. To be able to determine the best possible model, it is 
necessary to decide which of the different βs’ should be included in the model. In typical ordinary stepwise 
regression this is equivalent to selecting the best set of predictor variables for a regression model. 
Considering the case above (see Eq. (1)), where a more parsimonious model may be true such that: 
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                                         (3)                                                                                                               

                                                                                                                           
where φ is a subset of {1, 2,…, p}, Xφ 
indicates the matrix whose columns are the 
ones in X that are indexed by the integers in 
φ and βφ indicates the vector whose 
components are the ones in β that are also 
indexed by the integers in φ. Hence there are 
in total 2p-1 possible different models of the 
form represented by Eq. (3). For the model 
of the form of Eq. (1), if φ  is selected, the 
model is fitted based on Eq. (3): 

yXXXβ TT
φφφφ

1)(ˆ −=                                    (4)                                                                                                      

After determining the optimal model for use 
in regression analysis the overall 
performance of the model is then evaluated 
according to its prediction ability, e.g. how 
well a model can predict future samples. In 
most regression applications, the mean 
squared error of prediction (MSEP) of a 
model represents its prediction ability. In 
practice the lower the MSEP, the better is the 
prediction ability of the model. 

2.1. Model selection by Monte Carlo 
Cross Validation 

In general, validation attempts to select a model based on its prediction ability (Burman, 1989). For general 
validation, when φ is selected, the n data points (denoted by S) are split into two parts. The first part 
(calibration set), denoted by Sc (with corresponding submatrix XφSc and subvector ySc), contains nc data points 
for fitting the model. The second part (validation set), denoted by Sv (with corresponding submatrix XφSv and 
subvector ySv), contains nv = n - nc data points for validating the model. There are in total nCnv different forms 
of split samples. For each of the split samples, the model is fitted by the nc data points of the first part of Sc 
(Eq. (4)) to obtain 

csφβ̂
. The data ponts in the validation set are treated as if they are future samples. To assess 

the candidate models in validation the MSEP is usually used. Further details on mathematical formulation for 
estimating MSEP based on LOO and MCCV can be seen in Haddad et al. (2013). 

3. STUDY AREA AND DATA 

The Blue Mountains region (Figure 1) of New South Wales, Australia is selected as the study area. The Blue 
Mountains Water Supply System provides water to about 48,000 people residing between Faulconbridge and 
Mount Victoria, which are considered as Upper and Middle Blue Mountains area (Sydney Catchment 
Authority, 2009). Monthly metered water consumption data were collected from Sydney Water for the period 
of Jan 1997 to Sep 2011 for Cascades and Greaves Creek delivery systems. These two systems together make 
up the Blue Mountains Water Supply system which provides water to the twelve reservoir zones, namely, 
Mount Victoria, Blackheath, Catalina, Katoomba, Yosemite, Wentworth Falls, Bodington, Bullaburra, 
Lawson, Woodford, Linden, and Faulconbridge. 

In this study, the deterministic water demand model was developed by multiple linear regression technique 
using a number of predictor variables (see below) to forecast per dwelling monthly water demand for the 
single dwelling residential sector. The regression coefficients were estimated by adopting the ordinary least 
squares regression approach. Modelling was done by the log-linear form of multiple regression techniques. 
The functional form of the log-linear model is given in eq. (5). 

pp XXXy ββββ ++++= ...log 2211010                                                                                                    (5) 

Figure 1. Blue Mountains region in Australia and Cascade 
and Greaves creeks water supply area 
(Bluemountainsaustralia.com n.d.). 

εXy += φφ β
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where 0β is the model intercept, n...1β are the regression coefficients, and p is the number of predictor 

variables. 

Data for y (monthly per dwelling water use in kL) and X3 (water price in AUD/kL) were collected from 
Sydney Water for the period of Jan 1997 to Sep 2011. The climatic data X1 (monthly total rainfall) and X2 
(monthly maximum temperature) were collected from 
Sydney Catchment Authority for the study area. Data 
on approximate average yearly water savings for each 
of the water conservation programs implemented in 
the study area during the study period were collected 
from Sydney Water. These average yearly savings 
were converted into monthly savings by dividing it 
with 12. Data on the number of households that had 
participated in the programs were also collected in the 
monthly steps from Sydney Water. Then total 
monthly water savings from conservations programs 
were estimated by multiplying the average monthly savings with monthly participated household number. 
These monthly total savings were divided by the total number of households in that month to get the ‘per 
dwelling saving’ (X4) from all of the conservation programs. Water restriction savings (WRS (X5)) during 
drought periods (2003-2009) were calculated by deducting monthly per dwelling water conservation savings 
from monthly per dwelling total water savings, which can be expressed by the Eq. (6). Total per dwelling 
water savings were estimated by deducting observed water consumption for any month from the base water 
consumption of that month. In this study, the period 1997-2002 was chosen as the base consumption period 
as during these periods no water restriction was imposed in the study area. It should be noted that our 
modeling assumes that people’s water use behavior does not change with time. 

ijijTij WCSWSWRS )()()( −=                                                                                                                      

(6) 
 
Where, 
           WRS = Per dwelling monthly water restrictions savings (kL/month/dwelling); 

            WCS = Per dwelling monthly water conservation savings arising from use of water-efficient     
appliances (kL/month/dwelling); 

            TWS = Total water savings (kL/month/dwelling); 

                  i = drought year (2003, 2004, …, 2009); and 
                  j = month (Jan, ..., Dec). 

 
Table 1 presents the correlation between the predictor variables. It can be seen from Table 1 that there is 
significant multicollinearity between (X3, X5), (X3, X4) and (X4, X5). The predictors X1, X2 and X3 have no 
collinearity between them. These three variables are taken as the base case model and is referred to as model 
‘1’ in this analysis. Model 1 is then compared to three other candidate models using MCCV and LOO being:  

• X1, X2, X3 and X4  (referred to as model ‘2’ from now on); 
• X1, X2, X3 and X5  (referred to as model ‘3’ from now on); and 
• X1, X2, X3, X4 and X5 (referred to as model ‘4’ from now on). 

 

4. RESULTS AND DISCUSSIONS 

4.1. Application to observed data 

Given the 5 predictor variables and the 4 different regression models considered in this study (see above), 
some of the predictors may have minor effects on the estimation of monthly per dwelling water use, thus 
making some of the candidate models redundant. In order to select the best set of predictor variables for the 
regression models, LOO and MCCV in the OLSR framework were initially applied for the calibration data 
set (100 data points were selected randomly out of the 177 as the calibration data set). The results are listed in 
Tables 2a and 2b. Figure 2 illustrates the overall results of the modelling. For both the LOO and MCCV, they 
both tend to lean more towards the models with a greater number of predictors (i.e. model 4). One important 
aspect of the LOO as shown by Figure 2 is that it tends to underestimate the MSEP for all the candidate 

Table 1. Correlation between predictor variables 
used in this study 

 X1 X2 X3 X4 X5 
X1 1     
X2 0.223 1    
X3 0.109 -0.018 1   
X4 0.074 -0.008 0.92 1  
X5 0.102 -0.12 0.74 0.88 1 
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models on the calibration data set as compared to the higher nv. From this initial observation it is evident that 
LOO can over fit a selected regression 
model as compared to MCCV. 

The optimal LOO selects 4 and 5 
predictor variables (i.e. models 3 and 
4). The obtained models along with 
some summary statistics are provided 
in Table 2b. In the MCCV (considering 
nv = 15, 25, 35 and 50 data points 
during the validation and undertaking 
1,000 simulations), the optimal MCCV 
also selects four and five predictor 
variables (i.e. model 3 and 4) as shown 
in Table 2b.  

From a goodness-of-fit perspective, it 
can be seen that there is no notable 
difference between the models 
represented in Table 2b as the 
regression coefficients of the models 
are very similar. Also from the 
performance statistics the MSEPs’ and 
R2 values all fall in the similar range, 
except that the LOO model has the 
slightly higher R2 value (72%). It can be seen from Tables 2a and 2b that the LOO and MCCV pick the same 
predictor variables, but both LOO and MCCV also recognise that model 3 as a potential model as the 
MSEPs’ are quite similar. This suggests that both LOO and MCCV in this analysis are not adversely affected 
by multicollinearity (see Table 1). It can be seen from Table 2a that LOO gives the smaller MSEP for the 
calibration dataset. However, when comparing the different models from Tables 2a and 2b on the prediction 
data set the differences can be clearly illustrated.      

The four regression equations (Table 
2b) were finally to make prediction on 
the 77 validation data points. Figure 3 
shows the graphical results from this 
validation (shown only for LOO and 
MCCV model 3). It is observed that the 
prediction performance of MCCV is 
slightly better than the LOO even 
though they both contain the same 
variables and a slightly smaller R2 
value. It was also found that model 3 
was preferred to model 4 as model 3 
showed the lower MSEP in validation 
over the 77 data points. Here the 
prediction performance is slightly better 
for the MCCV as compared to LOO. 
This shows the typical manifestation of 
over fitting often caused by the LOO 
validation approach. As such, the results may look good for the LOO calibration dataset; however, when 
wanting to predict future samples, the model obtained from MCCV should be used. What is noteworthy, 
when estimating the prediction ability of a model, the LOO on the calibration data set seems to underestimate 
the MSEP on the validation data set. This is illustrated in Table 2a, where the MSEP on the calibration 
dataset are notably smaller than that of validation dataset. This result points out that the MCCV most often 
will report a better measure (or more realistic value) of MSEP for the selected model as compared to LOO. 

4.2. Application to forecasting  

In this paper, the future water demand was estimated for the 2021-2040 time periods for the single dwelling 
residential sectors using the model developed in this paper i.e. MCCV model 3 and comparing it with the 

Table 2a. MSEP values for calibration and validation data sets 

OLSR MSEP on calibration set MSEP on validation set 

nv Model LOO MCCV 
Model by 

LOO 
Model by 
MCCV 

1 3, 4 
0.00108, 
0.00103  

0.042, 
0.041  

15 3, 4  
0.0011, 
0.00105  

0.0415, 
0.0403 

25 3,4  
0.0011, 
0.00107  

0.0416 
0.0405 

35 3,4  
0.0011, 
0.00109  

0.0418, 
0.0402 

50 3,4  
0.00114 
0.00111  

0.0415, 
0.0403 

Figure 2. MSEP values associated with LOO and MCCV for 
different model combinations. 
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model 4. Using 1 (one) future climatic scenario (A1B) and 1 (one) possible water restriction condition (Level 
1), the future water demand were forecasted. Forecasted demand is presented by developing a 90% 
confidence band from the generated regression coefficients from the MCCV model for model 3 and model 4. 

The values of 5th and 95th percentiles 
were taken from the 1,000 simulated 
coefficients of the model. The 90% 
confidence bands may be interpreted 
that 90% of all the possible forecasts 
would fall within this band for any 
forecast year. The best possible 
(expected value) water demand for 
the forecasted periods is also 
reported here. It should be noted that 
the uncertainty/prediction limits 
reported here do not account for the 
model structure. Furthermore, the 
data length here is only 15 years, 
which seems to be inadequate to 
estimate the uncertainty with a 
reasonable amount of accuracy.   

 

The 90% confidence limits of the forecasted total yearly water demand for the climatic scenario forecasted is 
presented in Figure 4. It can be clearly seen here that the model 4 provides the wider limits which suggests 
that 4 predictors is more than sufficient for forecasting future water demand. This clearly demonstrates that 
more predictors do not necessarily add anymore meaningful information, but on the contrary may over fit the 
data.  As shown in this study the best model for forecasting can be obtained through proper validation 
techniques, lack of robust validation may give imprecise results which could undermine any meaningful long 
term future demand forecasting.  

 

Figure 3. MSEP plot for 77 data points validation set using LOO and MCCV. 

 

 

Figure 4. 90% confidence limits for total yearly water demand from 2021 to 2040 using model 4 and model 
3. 
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Table 2b. LOO and MCCV optimal models shown along with 
summary statistics 

Validation Regression Eqn. R2 MSEP 

LOO 

(Model 4) 

1.14 + -9.9e-5(X1) + 0.005(X2)+ 

0.016(X3)- 0.06(X4)-0.024(X5) 70% 0.042 

LOO 

(Model 3)  

1.17 + -8.4e-5(X1) + 0.004(X2)-

0.026(X3)-0.031(X5) 72% 0.041 

MCCV 

(Model 4) 

1.14 + -1.0e-4(X1) + 0.005(X2)+ 

0.016(X3)- 0.057(X4)-0.024(X5) 70% 0.0418 

MCCV 

(Model 3) 

1.17 + -8.5e-5(X1) + 0.0044(X2)-

0.026(X3)-0.030(X5) 71% 0.0402 
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5. CONCLUSIONS 

Selection of the right regression model and estimation of its predictive ability are important steps in any 
regression analysis, this is usually undertaken by some kind of validation. This study compared the 
performances of the most commonly adopted leave-one-out (LOO) validation with the Monte Carlo cross 
validation (MCCV) procedures. This study uses observed water demand data from the Blue Mountains 
region in New South Wales State in Australia. It has been found that when developing long term water 
demand regression forecast models, application of MCCV is likely to result in more parsimonious model 
than the LOO case. The findings of this shed some light on the way that is usually adopted in regression 
analysis to estimate regression coefficients, which solely rely on the statistical significances of the regression 
coefficients in selecting an appropriate regression model. Finally the best model selected by MCCV was used 
to forecast water demand into the future while also examining the uncertainty in the water demand for an 
example case. Overall the study may help to provide water authorities with useful information on uncertainty 
estimates and an indication of future residential water demand. 
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