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Abstract: The dependence in the outcome variables is a major issue of concern in modeling the correlated
data stemmed from the repeated observations. The marginal models such as GEE and the conditional models
based on Markov chain have been employed for longitudinal data in the past. However, it has been evident that
without addressing the underlying association parameters, the analysis of repeated outcome variables remains
far from being resolved. In this paper, a method has been demonstrated to model such data using the underlying
dependence in the outcome variables as well as dependence between outcome and explanatory variables. An
extension of the regressive model is shown in this paper and a comparison is demonstrated between the existing
model (reduced model) and the proposed model (extended model). The models are illustrated for depression
among the elderly population in the USA using the Health and Retirement Study data from 1992 to 1998.
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1 INTRODUCTION

The outcome variables generated from longitudinal studies are generally correlated. To resolve the problem of
dependence in outcome variables over time, we can employ marginal model like GEE or conditional models
based on the Markov chain or Markov process. There are limitations in those techniques due to either cor-
relation structure or number of parameters to be estimated. In this paper, the regressive model approach is
extended to address such problem.

The modeling of correlated binary outcomes has been discussed in Bonney (1987), Prentice (1988), Zeger and
Qaqish (1988), Neuhaus et al. (1991), Liang et al. (1992), McDonald (1993), le Cessie and van Houwelin-
gen (1994), and Solis-Trapala et al. (2007). Most of the previous works for different association measures
of dependence were based on the marginal response probabilities. Muenz and Rubinstein (1985), Bonney
(1986, 1987), Azzalini (1994), Islam and Chowdhury (2006, 2007, 2010) and Islam et al. (2009) employed
the conditional regressive logistic models under the Markov assumptions. Edwards (2000) provided an ap-
proach of graphical modeling where the Simpson’s paradox is illustrated and the log-linear model is used to
take into account interactions among the factors for assessing dependence. We can generalize the works of
Bonney (1986, 1987), Islam and Chowdhury (2006, 2007, 2010) and Islam et al. (2009) to include both binary
outcomes in previous times as well as covariates in the conditional models. The joint mass function for two
outcome variables Y1 and Y2 at follow-ups 1 and 2, respectively, in the presence of covariates X1,...,Xp, and
let X = (1,X1,...,Xp), can be expressed as product of the conditional and marginal probability mass functions
for given values of covariates as follows:

PY1,Y2|X (y1,y2 |x ) = PY1|X (y1 |x )× PY2|Y1,X (y2 |y1,x ) (1)

where PY1,Y2|X (y1,y2 |x ) is the joint mass function for Y1 and Y2, PY1|X (y1 |x ) is the marginal mass func-
tion for Y1, PY2|Y1,X (y2 |y1,x ) is the conditional probability for Y2 given Y1 = y1, x = (1,x1,...,xp)

′,
i = 1, 2, , n, is the vector of covariate values, and yj, j = 1, 2 is the value of the outcome variable at the j-th
follow-up.

Bonney (1987) proposed a regression model for the conditional probabilities as shown below:

PY2|Y1 ,X(y2 |y1;x ) =
eθy2

1 + eθ
, (2)

where θ = γ0 + γ1x1 + ... + γpxp + β1y1, γ0 is the intercept, β0 is the coefficient of the previous outcome,
Y1, and γ1, ..., γp are the coefficients of the covariates X1, ..., Xp, respectively. Here θ is the logit defined as

θ = ln
PY2|Y1 ,X(Y2= 1 |y1,x )
PY2|Y1,X (Y2= 0 |y1,x )

.

2 TEST FOR DEPENDENCE: AN EXTENDED REGRESSIVE APPROACH

Let us consider the following regressive model for the j-th follow-up (j = 1, , J) with two binary outcomes to
test for the dependence in the outcome variables as well as between the covariates and the outcome variables.
Let us define Yj= s, s = 0, 1 at follow-up j = 1, 2. Then the model with prior outcome and p covariates is
(Islam et al., 2012):

PY2|Y1,X,Z (Y2= s |y1,x, z) =
e(γ
′x+β1y1+η

′z)s

1 + e(γ′x+β1y1+η′z)
, s = 0, 1 (3)

where x = (1, x1,...,xp)
′, γ′ = (γ0, γ1, ..., γp), β1 is the parameter corresponding to Y1, z =

(z1,...,zp)
′
=(x1y1,..., xpy1)

′, η′ = (η1, ..., ηp). It may be noted here that this model is an extension of (2)
as it contains interaction terms Z = (Z1,...,Zp)

′. We can extend this further considering Yj = s, s = 0, 1 at
follow-up j = 1, 2, ..., J as follows:

PYj |X,Yj−1,Vj−1,Z (Yj= s |x,yj−1,vj−1,zj−1) =
e(γ
′x+β′j−1yj−1+ρ

′
j−1vj−1+η

′
j−1zj−1)s

1 + e(γ
′x+β′j−1yj−1+ρ′j−1vj−1+η′j−1zj−1)

, s = 0, 1

(4)

where x = (1, x1,...,xp)
′, γ′ = (γ0, γ1, ..., γp), yj−1 = (y1, ..., yj−1), βj−1 = (β1, ..., βj−1) is the vector of

parameters corresponding to Yj−1 = (Y1, ..., Yj−1), vj−1 = (v12,...,v12...j−1)
′
=(y1y2,..., y1y2...yj−1)

′,
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ρ′ = (ρ12, ..., ρ12...j−1), zj−1 = (z11,...,z1p, ..., zj−11,...,zj−1p)
′
=(x1y1,..., xpy1, ..., x1yj−1,..., xpyj−1)

′,
η′ = (η11, ..., η1p, ..., ηj−11, ..., ηj−1p). It may be noted here that this model is an extension of (3) as it
contains interaction terms Zj−1 = (Z11,...,Z1p, ..., Zj−11, ..., Zj−1p)

′.

Let λ′j−1 =
(
γ′,β′j−1,ρ

′
j−1,η

′
j−1
)
, and W′

j−1 = (X′,Y′j−1,V
′
j−1,Z

′
j−1). Then

PYj |Wj−1
(Yj= s |wj−1) =

e(λ
′
j−1wj−1)s

1 + e(λ
′
j−1wj−1)

, s = 0, 1 (5)

and if θj−1 = (λ′j−1w
′
j−1), then

PYj |Wj−1
(Yj= s |wj−1) =

eθj−1s

1 + eθj−1
, s = 0, 1. (6)

The log likelihood function is

l =
n∑
i=1

[
Yjiθj−1,i − log(1 + eθj−1,i)

]
(7)

and the score function is

U =
n∑
i=1

[
Yji −

(
1 + eθj−1,i

)](∂θj−1,i
∂λ

)
(8)

The observed information can be obtained as follows:

−∂
2l(λ)

∂λ∂λ′
=

n∑
i=1

eθj−1(λ)[
1 + eθj−1(λ)

] (∂θj−1,i
∂λ

)(
∂θj−1,i
∂λ

)′
(9)

From the models 3 and 4, it appears that if the interaction terms are ignored, the test for independence based
on the previous outcomes alone may result in misleading conclusions. Hence, under independence, the model
(4) can be defined as:

PYj |X,Yj−1,Vj−1,Z (Yj= s |x,yj−1,vj−1,zj−1) =
e(γ
′x)s

1 + eγ′x
, s = 0, 1. (10)

We need to test for H0 : λ∗j−1= 0 against H1 : λ∗j−1 6= 0 for model (5) which is denoted as full model
and model is the reduced model under the null hypothesis, where λ∗′j−1 = (βj−1,ρj−1,ηj−1)

′ and the total
number of parameters need to be tested is (2j−1 − 1) for βj−1 and ρj−1 and (j − 1)p parameters for ηj−1.
This test can be performed using the likelihood ratio and the test statistic follows chi-square asymptotically
with (2j−1 − 1) + (j − 1)p degrees of freedom.

3 APPLICATION TO DEPRESSION DATA

For this study, the panel data from the Health and Retirement Study (HRS), sponsored by the National Institute
of Aging (grant number NIA U01AG09740) and conducted by the University of Michigan (HRS, 2002), have
been used. The respondents of this study are individuals over age 50 and their spouses. We have used the panel
data from the four rounds or waves for 1992, 1994, 1996 and 1998. The depression index is computed using
the scale proposed by the Center for Epidemiologic Studies on Depression (CESD). Severity of the emotional
health can be measured from the CESD score. We have used 9761 respondents for analyzing depression among
the elderly in the USA during 1992-1998. Many studies on clinical and non-clinical populations, CESD scale
is employed to measure depressive symptoms (Steffick, 2000). Cheng et al. (2006) demonstrated the utility
and validity of a short version of the CESD scale. The elderly population may suffer from repeated spells of
depression resulting in fatality in some cases (Wasylenki, 1980). Depression is prevalent among the elderly
and in many instances difficult to diagnose. Evans and Mottram (2000) observed that the spells of depression
may change over time. A third of the minor depression patients may develop major depression over time, and
a half of those with major depression may suffer from minor depression after recovery.

We considered the following dependent and explanatory variables: depression status (no depression (CESD
score 0) = 0, depression (CESD score>0) = 1), we may denote Y1= depression status at 1992, Y2= depression

2001



M. Ataharul Islam et al., A Model for Assessing the Association in the Repeated Measures...

status at 1994, Y3= depression status at 1996, and Y4= depression status at 1998; gender (male=1, female=0),
marital status (married/partnered =1, single/widowed/divorced=0), ethnic group (white=1, else 0; black=1, else
0; others= reference category), age, drinking habit (drink=1, does not drink=0), number of health conditions
and total income.

Table 1 shows the fit of the full and reduced models. The full model includes: (i) the potential risk factors
age, gender, marital status, white and black ethnic groups, drinking habit of alcohol, and number of conditions
regarding previous health problems, (ii) previous outcomes, (iii) interaction between variables in (i) and (ii),
interaction between variables in (ii). The reduced model takes into account the variables in (i) and (ii). In
both the models, we observe that marital status, number of conditions and previous outcome CESD 2 (from
wave 2) are significantly associated with depression status in wave 4 (Y4 ). In addition, the reduced model
demonstrates association with gender, marital status, total income, CESD 1 and CESD 3 while the full model
shows association with age and marital status. The full model shows that gender, marital status and white
race, as compared to other races, are negatively associated with depression and the model is significant (p-
value<0.001) in the reduced model but gender appears to be non-significant in the full model. In the full
model, it is observed that some of the interaction terms such as CESD 1 and age (p-value<0.10), CESD 1
and white race (p-value=0.055), CESD 1 and black race (p-value < 0.01), CESD 3 and number of conditions
(p-value=0.051), CESD 3 and total income (p-value <0.05) and CESD 1 and CESD 3 (p-value <0.01). This
finding confirms our assertion that the reduced model which is used extensively fails to specify the model
adequately.

The likelihood ratio test is performed for the hypothesis H0 : λ∗j−1 = 0 against H1 : λ∗j−1 6= 0 for model
(5) and the value of chi-square is 51.497 (p-value = 0.003).This indicates that the full model with interaction
terms is more specified and without the interaction terms there is a possibility of coming up with misleading
results for analyzing the dependence in outcome variables which depend on the association between previous
outcomes and potential risk factors and among the previous outcomes as well. The results demonstrate that
some of the interactions are statistically significant and hence the full model is preferred rather than the reduced
model.

4 CONCLUDING REMARKS

In a regressive models both the covariates and the previous outcomes are included. In this paper, an extended
regressive model is proposed to reveal the underlying relationships between outcome variables, relationship
between previous outcomes and potential risk factors and the association between pairs of previous outcomes.
The proposed and reduced models are fitted employing the longitudinal depression data using the proposed
full model and the existing reduced model. The results indicate that there are statistically significant inter-
action terms which reveal the dependence not only among the outcome variables but also between previous
outcomes and also between previous outcomes and the potential risk factors. The proposed model provides
more specified model and the results are more meaningful to the policymakers.
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Table 1. Estimates of parameters of the proposed and the reduced models for the status on depression among
elderly population

Reduced Model Full Model
Parameter Estimate Standard

Error
p-value Estimate Standard

Error
p-value

Intercept -0.889 0.399 0.026 -1.446 0.622 0.020
Age (wave I) 0.008 0.006 0.228 0.023 0.010 0.022
Sex -0.105 0.056 0.061 -0.107 0.084 0.202
Marital status (wave I) -0.222 0.065 0.001 -0.246 0.104 0.018
White -0.101 0.157 0.519 -0.336 0.256 0.190
Black 0.082 0.170 0.628 -0.278 0.281 0.322
Drink (wave I) -0.065 0.058 0.260 -0.081 0.087 0.348
# of cond. (wave I) 0.143 0.027 0.0001 0.132 0.044 0.003
Total income (wave I) 0.000002 0.000001 0.0001 -0.000001 0.000001 0.178
CESD1 (wave I) 0.567 0.062 0.0001 1.099 0.857 0.200
CESD2 (wave II) 0.924 0.059 0.0001 2.174 0.843 0.010
CESD3 (wave III) 1.137 0.058 0.0001 0.473 0.833 0.571
CESD1*Age -0.026 0.014 0.060
CESD2*Age -0.019 0.014 0.158
CESD3*Age 0.007 0.014 0.601
CESD1*Sex -0.053 0.127 0.677
CESD2*Sex -0.055 0.120 0.647
CESD3*Sex 0.109 0.118 0.360
CESD1*Marital status 0.186 0.145 0.198
CESD2*Marital status -0.132 0.138 0.341
CESD3*Marital status 0.052 0.136 0.704
CESD1*White 0.631 0.329 0.055
CESD2*White -0.025 0.326 0.938
CESD3*White -0.046 0.324 0.888
CESD1*Black 0.959 0.359 0.008
CESD2*Black -0.027 0.354 0.939
CESD3*Black -0.038 0.351 0.914
CESD1*Drink 0.109 0.130 0.402
CESD2*Drink -0.161 0.123 0.191
CESD3*Drink 0.121 0.123 0.325
CESD1*# of cond. -0.036 0.057 0.526
CESD2*# of cond. -0.039 0.057 0.494
CESD3*# of cond. 0.112 0.057 0.051
CESD1* Total income 0.000 0.000 0.154
CESD2* Total income 0.000 0.000 0.280
CESD3* Total income 0.000 0.000 0.034
CESD1* CESD2 0.109 0.128 0.394
CESD1* CESD3 0.408 0.129 0.002
CESD2* CESD3 0.045 0.119 0.706
-2 Log L 8057.884 8006.387
Likelihood Ratio (DF, p-value) 1720.1421

(11,
p<0.01)

1771.64
(38,p<0.01)
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