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Abstract: The analysis of aggregate data has been gaining momentum in the statistics and allied 
disciplines, (including public policy, political science and epidemiology) for more than 20 years. As a result, 
the issue has received an increasing amount of attention by categorical data analysts. Performing aggregate 
data analysis is quickly becoming unavoidable in many situations, especially when individual level data is 
unavailable. For example, the U.S. Justice Department uses aggregate data to formulate the public policies 
against racial discrimination, political scientists are always interested in exploring the political or ideological 
preferences of different demographic groups while social scientists use aggregate data to study the 
relationship between crime and unemployment. The availability of aggregate data has increased due to strict 
confidentiality restrictions imposed upon by government and corporate organisations who are reluctant to 
release individual level information. There is a wealth of contributions on this issue that is available in the 
ecological inference (EI) literature which considers the association structure between categorical variables (at 
the individual level) given only the aggregate information. The main difficulty in EI arises due to the loss of 
information during the process of aggregation and results in aggregation bias. It is also a matter of concern 
for aggregate data analysts that the interpretation of the parameters from EI models might be entirely 
different to analogous parameters for the study of individual level data. An alternative strategy to EI is to 
consider the recently proposed Aggregate Association Index (AAI) that allows the analyst to quantify the 
overall extent of association between two dichotomous variables given only the aggregate, or marginal, 
information of a 2x2 table. Unlike EI, the AAI does not estimate, or model, the conditional proportions but 
focuses instead on gauging the extent of association between the variables. The AAI can also be further 
partition into positive and negative association terms thus enabling the analysts to understand the more likely 
direction of the association given only the aggregate data. However, the major issue with the performance of 
AAI is the impact the sample size has on its magnitude. In this paper we investigate the informativeness of 
the aggregate data for inferring an association exists between the variables of a 2x2 table. This article 
introduces development of an F-test to determine the statistical significance of the information contained in 
the aggregate data for inferring a statistically significant association between the variables. Unlike Pearson’s 
chi-squared statistic, the F-statistic is robust to any change in the sample size and depends only on the 
aggregate information in the contingency table. Thus this statistic provides an opportunity to understand the 
structure of a 2x2 table without being influenced by sample size. The applicability of this test is demonstrated 
by using the Selikoff’s (1981) asbestosis data which was collected from 1117 insulation workers of New 
York City in 1963 to explore the links between asbestosis and occupational exposure to asbestos fibres. Such 
work was the key to establishing the link between asbestosis and mesothelioma. As a result of findings of this 
nature, many international government organisations have now banned the production, and importation, of 
goods that contain asbestosis fibres.     
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1. INTRODUCTION 

The analysis of aggregate data has received a considerable amount of attention from researchers across a 
broad range of disciplines in the past 20 years. In particular, ecology, statistics and political science have 
made significant contributions to this area of research. The use of aggregated data is almost unavoidable in 
many areas of research due in part to the imposition of strict privacy policies by government and commercial. 

Discussions concerning the utility of aggregate data when only marginal level data is available has deep 
statistical roots. Fisher (1935) questioned the usefulness of aggregate data and he was convinced that it is of 
limited use. Placket (1977) and Berkson (1978) considered the same issue and concluded that aggregate data 
can be utilized in order to infer about joint frequencies. Yates (1984, pp. 447) agreed with Fisher’s 
conclusion, however, he argued that, for “extreme” marginal frequencies, the estimation of the cell values 
was possible. Haber (1989) demonstrated that the maximum likelihood estimate of the joint cell values of a 
2x2 contingency table do not exist unless one of the cells is zero. Aitkin and Hinde (1984), Bernard (1984) 
and Beh, Steel and Booth (2002) also made valuable contributions to this discussion. 

The most commonly used set of techniques to analyse aggregate data are those belonging to ecological 
inference (EI) - the growth of which has been strong in the development and application of these techniques. 
These EI techniques focus on the estimation and modelling of the cell values (or some simple function of 
them) for multiple or stratified 2x2 contingency tables. Goodman (1953, 1959), Freedman et.al. (1991), King 
(1997), King, Rosen and Tanner (1999), Steel, Beh and Chambers (2004), Wakefield (2004) and more 
recently Wakefield, Haneuse, Dobra and Teeple (2011) have made considerable contributions to the growing 
literature on this topic. Hudson, Moore, Beh and Steel (2010) have provided an extensive discussion and 
comparison of many of the more popular EI techniques. However, the assumptions that are imposed for these 
EI techniques are unrealistic, untestable or hard to meet in real life. Therefore, recent contributions on the 
topic have shifted from modeling the cell frequencies given only the aggregate data (which underlies all EI 
techniques) to the analysis of the association structure between dichotomous variables. In doing so, Beh 
(2008, 2010) proposed a new index called the Aggregated Association Index (AAI) which quantifies the 
extent of association that may exist between two dichotomous variables at the α level of significance, given 
only the aggregate data from a single 2x2 contingency table. However, the magnitude of the AAI is under the 
influence of the sample size of the contingency table. Beh et. al. (2013) have proposed some adjustments to 
reduce the effect of sample size on AAI.   

In this article we propose an F-statistic that can be used to formally test the statistical significance of the 
extent of information about the association structure when only the marginal information of a single 2x2 
contingency table is available. Our statistic is robust to any change in sample size and its applicability is 
demonstrated by using Selikoff’s (1981) asbestosis data. This paper is further divided into three sections. 
Section 2, defines the notation used and Beh’s (2008, 2010) AAI. The F-statistic is introduced in Section 3 
and its application is demonstrated in Section 4. Some final remarks are made in Section 5. 

2. THE AGGREGATE ASSOCIATION INDEX 

2.1. Notation 

Consider a random sample of ݊ individuals, or units, that is cross-classified according to two dichotomous 
variables to form a 2x2 contingency table. Denote ݊as the joint frequency of the (݆݅)ݐℎ cell of this table and  = ݊ ݊⁄   the corresponding cell proportion. The marginal cell frequencies for the ݅′ݐℎ row and ݆′ݐℎ 
column are ݊. = ∑ ݊ଶୀଵ and ݊. = ∑ ݊ଶୀଵ , respectively, and their marginal cell proportions are denoted as . = ݊. ݊⁄  and . = ݊. ݊⁄ . The general structure of a 2x2 contingency table is presented in Table 1. 

Table 1: A general 2x2 contingency table 
 Column 1 Column 2 Total 

Row 1 ݊ଵଵ ݊ଵଶ ݊ଵ. 
Row 2 ݊ଶଵ ݊ଶଶ ݊ଶ. 
Total ݊.ଵ ݊.ଶ ݊ 
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The expected value of ݊ under some criteria (including, but not limited to, independence) is denoted by ݁. 
For example, under the hypothesis of independence between the two dichotomous variables, ݁ = ݊.݊. ݊⁄ , 
while the mean cell frequency is ܽ = ݊ 4⁄ = ത݊. Define ଵܲ = ݊ଵଵ ݊ଵ.⁄  as the conditional probability of the 
classification of an individual/unit into “Column 1” given that it has been classified into “Row 1”.  

When the individual level data is not available in Table 1, the ݊ଵଵ is bounded as Aଵ = max(0, ݊.ଵ − ݊ଶ.) ≤ ݊ଵଵ ≤ min(݊.ଵ, ݊ଵ.) = Bଵ.                                                                                (1) 

The bound (1) has often been used in the EI literature; see, for example, Duncan and Davis (1953), King 
(1997), Steel, Beh and Chambers (2004) and Wakefield (2004). This bound can be alternatively expressed in 
terms of ଵܲ as ܮଵ = max ቀ0, .భିమ.భ. ቁ ≤ ଵܲ ≤ min ቀ.భభ. , 1ቁ = ଵܷ.                                                          (2) 

Beh (2010) showed that bound (2) is narrowed to 

ఈܮ = ݔܽ݉ ቆ0, .ଵ − ଶ.ටఞഀమ ቀ.భ.మభ.మ.ቁቇ < ଵܲ < ݉݅݊ ቆ1, .ଵ + ଶ.ටఞഀమ ቀ.భ.మభ.మ.ቁቇ = ܷఈ.                              (3) 

when a test the of association is made at the α level of significance. It is important to note that (3) depends 
only on the marginal information and sample size of the data. 

2.2. The AAI 

Instead of estimating the cell values by modeling the aggregate data, Beh (2008, 2010) proposed the AAI to 
quantify the overall extent of association between two dichotomous variables at the α level of significance, 
given only the aggregate data. The AAI uses the transformation of Pearson’s traditional chi-squared statistic 
in terms of ଵܲ as ܺଶ( ଵܲ|ଵ., (ଵ. = ݊ ቀభି.భమ. ቁଶ ቀభ.మ..భ.మቁ.                                                                                                          (4) 

Note here that Yates’ continuity correction is not incorporated into the statistic; refer to Beh (2010) for a 
discussion of its exclusion from the AAI calculation. By using (4), the AAI is calculated by 

ఈܣ = 100ቆ1 − ሾ(ഀିభ)ା(భିഀ)ሿఞഀమା మ(భೆഀಽഀ |భ.,.భ)ௗభ మ(భೆభಽభ |భ.,.భ)ௗభ ቇ.                                                                         (5) 

The AAI considers the uniform distribution of every value of ଵܲacross the curve – referred to as the AAI 
curve – defined by (4). This curve is depicted in Figure 1.The AAI ranges between 0 and 100 where a near 
zero AAI indicates that, given the aggregate data, there is no evidence of a statistically significant association 
existing between the dichotomous variables. However values of the AAI close to 100 indicate that there 
exists considerable evidence to conclude that such a statistically significant association exists. A graphical 
depiction of the AAI can be seen by viewing the proportion of the total area under the curve – defined by (4) 
– that is shaded in Figure 1. 
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Figure 1: A visual display of AAI; its magnitude is the proportion of the area under the AAI curve that is 

shaded 

2.3. The Least Informative Situation (LIS) 

The major issue with the AAI is that its magnitude is under the influence of the sample size. For example, as 
the sample size increases the value of AAI also increases. Beh (2010) recognized that, when the sample size 
is equally distributed across the row and column marginals such that ݊. = ݊. = ଶ, then there exists the least 

information available in the marginal data to infer anything about the statistical significance of the 
association between the variables. We refer to this situation as the least informative situation, or LIS, and it 
can be used in the development of procedures to formally test the statistical significance of the information in 
the aggregate data. Interestingly, in the LIS, the expected cell values under independence are equal to the 
average cell value so that ݁ = ܽ for all i and j. In the LIS equation (2) can be simplified to ܮଵ = 0 ≤ ଵܲ ≤ 1 = ଵܷ.                                                                                                                               (6) 

and (4) can be written as ܺଶ( ଵܲ) = ܺଶ( ଵܲ|ଵ. = ଵଶ , ଵ. = ଵଶ) = ݊(2 ଵܲ − 1)ଶ.                                                                                   (7) 

where ܺଶ( ଵܲ) refers the AAI curve defined by (4) when the LIS is observed.    

3. METHODOLOGY 

3.1. Degrees of Freedom 

As it is well understood, when considering the test of independence between two dichotomous variables, 
Pearson’s chi-squared statistic is a chi-squared random variable with one degree of freedom. As a result, for 
the development of AAI, Beh (2008, 2010) also considered one degree of freedom. However, when only 
aggregate data is available, there are five pieces of information known to the analyst; these are the four 
marginal proportions and the total sample size. Therefore, we need only three values to complete the 
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structure at marginal level; any of the two row marginal values, any of the two column marginal values and 
the sample size. We therefore consider that every point along the AAI curve graphically depicted using (4) 
follows a chi-square distribution with three degrees of freedom instead of Beh’s (2008, 2010) one degree of 
freedom.   

Since all that is required for the LIS is the sample size under this situation we consider the chi-squared 
distribution with one degree of freedom for every possible value of ଵܲ across the AAI curve depicted using 
(7). 

3.2. Test Statistic 

Here we introduce a formal procedure for testing the statistical significance of the extent of information given 
only the aggregate data of a 2x2 contingency table. Suppose we consider the following test: ܪை:	The aggregate data is not informative about the association structure of a 2x2 table. ܪ: The aggregate data is informative about the association structure of a 2x2 table. 

When undertaking such a test, we should consider that the test statistic reflects the maximum deviation of the 
marginal structure of a 2x2 contingency table from the LIS. In doing so, the overall mean value of Pearson’s 
chi-squared statistic across the possible range of ଵܲ values is obtained by integrating (4) over the range (2) 
and then dividing this by (2) yielding 

 మ(భ|భ.,.భ)ௗುభೆభಽభ భିభ = మൣ(భି.భ)యି(భି.భ)య൧ଷ(భିభ) .                                                                                               (8) 

The sampling distribution of statistic in equation (8) follows a chi-square distribution with three degrees of 
freedom, where, ݇ଶ = .ଵ ⁄(.ଶଶ.ଵ.) . For the LIS, equation (8) may be simplified to  ܺଶ( ଵܲ)݀భ = ଶଷଵ .                                                                                                                                    (9) 

since, in this case, ܮଵ = 0 and ଵܷ = 1. The statistic (9) follows a chi-square distribution with one degree of 
freedom. It is worth noting that both statistics, (8) and (9), are independent to each other as they are based 
upon different chi-square distributions and degrees of freedom. Thus, by considering the ratio of (8) and (9) 
and dividing them by their respective degrees of freedom, the general expression of the F-test statistic is  ܨ = (భିభ)మሾ(భି.భ)యି(భି.భ)యሿ.                                                                                                                         (10) 

Equation (10) follows the F-distribution with numerator degrees of freedom 1 and denominator degrees of 
freedom 3. It is apparent by considering the F-statistic (10) that it does not depend on the sample size and its 
magnitude depends only on the available aggregate data.  

4. APPLICATION 

The applicability of F-statistic given by equation (10) for testing the information contained in the marginal 
proportions for inferring a statistically significant association between the dichotomous variables is 
established here by using Selikoff’s (1981) asbestosis data set. In 1963, a study was conducted that involved 
1117 insulation workers in New York. This study, and its findings published by Selikoff (1981), established 
the link between long-term occupational exposure to asbestos fibers and the severity of asbestosis the 
workers were diagnosed with. The impact of this study data established for the first time the links between 
asbestos exposure and lung disease. As a result, many governments have introduced laws that ban the 
manufacturing, and importation, of products containing asbestos fibres. This data, summarized in Table 2, 
has also been a topic of statistical discussion by Beh and Smith (2011) and Tran, Beh and Smith (2012); the 
latter studied the data in terms of the AAI. Table 2 also summarises the expected cell frequencies under 
independence between the variables (in parentheses on the left hand side) and under the LIS (in parentheses 
on the right hand side). 
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Table 2: Diagnosis and exposure to asbestosis  
Selikoff’s asbestosis data Least informative situation (LIS) 

 Asbestosis   Asbestosis  

Onset of 

exposure 

No Yes Total Onset of 

exposure 

No Yes Total 

0-19 years 522*(373.21) 203(351.79) 725 0-19 years (279.25) (279.25) 558.5 

20+ years 53(201.79) 339(190.21) 392 20+ years (279.25) (279.25) 558.5 

Total 575 542 1117 Total 558.5 558.5 1117 

*Observed cell frequencies. Expected cell frequencies under the independence are in the brackets 

Pearson’s chi-squared test of independence shows that there is a statistically significant association between 
the time spent exposed to asbestos fibres and whether a work contracts asbestosis (p-value < 0.0001). For 
Table 2, (ଵ., (.ଶ = (0.65, 0.35) and (.ଵ, (ଶ. = (0.51, 0.49) and thus by using (2), the bounds of ଵܲ for the 
AAI curve is 0.25 ≤ ଵܲ ≤ 0.79. The AAI for Table 2 is 99.81, which is very high. The magnitude of the 
index therefore indicates that it is very likely, based only on the aggregate data, that a statistically significant 
association exists between the dichotomous variables if a test of association is made at the 5% level of 
significance; thus confirming the findings of the chi-squared test of independence (where the individual level 
information is known). However, the magnitude of the AAI may be because the marginal information 
suggests that a statistical significance between the variables is very likely, or perhaps it’s because of the 
moderately high sample size of n = 1117. To explores this, the F-statistic (10) is considered.  

Equations (4) and (7) are calculated as 

ܺଶ ൬ ଵܲ|ଵ. = 7251117 , ଵ. = 5751117൰ = 878617169106232 ൬ ଵܲ − 7251117൰ଶ 

and 

ܺଶ( ଵܲ) = 4468 ቀ ଵܲ − ଵଶቁଶ, 

respectively. By using ranges (2) and (6), the value of expressions (8) and (9), are 20.49 and 744.67 
respectively. Therefore, the F-statistic (10) is 106.02 and, for a F-distributed random variable with 1 and 3 
degrees of freedom, has a p-value of 0.002.This small p-value provides enough evidences against the null 
hypothesis, leading to the conclusion that the aggregate data is in fact useful for assessing the statistical 
significance of the association structure between time of exposure and presence of asbestosis. 

5. DISCUSSION 

The recently developed AAI quantifies how likely a statistically significant association will exist between 
two dichotomous variables of a 2x2 contingency table given only the aggregate data of the table. Here we 
have presented a new approach to test whether the magnitude of the AAI is due to the informativeness of the 
aggregate data in making such a conclusion, or whether its perhaps due to the sample size considered. The 
key to this test is the F-test statistic defined by equation (10). The advantage of considering this statistic is 
that conclusions from such tests are independent of the sample size thus helping to establish the statistical 
significance of the association structure between dichotomous given only the aggregate data. The 
applicability of the statistic is demonstrated by using the Selikoff’s (1981) asbestosis data. 

Future research into this aspect of aggregate data analysis can be made by developing an extension of the 
AAI and the F-statistic for contingency tables of size larger than 2x2. Adapting these measures for multiple, 
or stratified, 2x2 tables can also be considered. For larger dimensional contingency tables, formed by cross-
classifying ordered categorical variables, an interesting extension is the development of the AAI and its F 
statistic taking into consideration the structure of these variables. On the basis of the LIS, a further issue that 
can be investigated is the development of a test of homogeneity of the information among strata for stratified 
2x2 tables.   
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