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Abstract: A carious lesion in the tooth enamel is a result of a chemical reaction between mobile organic acids
and static hydroxyapatite. Hydroxyapatite is the main component of human tooth enamel, whereas, organic
acids are produced in dental plaque by oral microorganisms which metabolize simple sugars from the diet.
The organic acids can be transported into the enamel in a dissociated or undissociated form, which depends
on the pH of the dental plaque. The transport of ions is diffusive and is motivated by the small diameter of the
hydrogen ions compared to the size of the enamel tubules, whereas, when large acid molecules move into the
enamel, subdiffusion occurs.

Diffusion is a natural process involving the spontaneous spreading of a substance. Diffusion is characterized
by the time dependence of the mean–square displacement of a random walker

〈

(∆x)2(t)
〉

= Dαt
α/Γ(1+α),

whereα is a diffusion parameter,Dα is a diffusion coefficient measured in the units ofm2/sα andΓ(x)
denotes the Gamma function. For0 < α < 1 we are dealing with subdiffusion; forα = 1, we have a
situation of normal diffusion, and forα > 1, we encounter superdiffusion. Subdiffusion occurs in media in
which the movement of the random walker is strongly hindered due to the complex structure of a medium and
subdiffusion occurs—among other things—in porous media or gels.

Equations describing the subdiffusive transport of acid molecules and their reaction with static hydroxyapatite
are nonlinear partial differential equations with the Riemann-Liouville fractional time derivative

∂CA(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2CA(x, t)

∂x2
−Rα(x, t) , (1)

∂CB(x, t)

∂t
= −Rα(x, t) , (2)

whereCA denotes the concentration of a mobile substanceA, CB—the static substanceB and the reaction
term takes the form

Rα(x, t) =
∂1−α

∂t1−α
kCA(x, t)CB(x, t) , (3)

andk is the reaction rate constant. Forα = 1 we obtain equations describing a normal diffusion–reaction
system. As far as we know, the general solutions, i.e. for arbitrary parameter values, to (sub)diffusion–reaction
equations have not been found yet. Thus, in order to simplify the calculations, various approximations, such
as the quasistationary approximation, the scaling method, or the perturbation method, are used. Employing
these methods, characteristic functions of the system can be derived which include, among others things, the
time evolution of the reaction front which can be identified with a lesion depth.

Using the perturbation method we find approximate solutions to the normal diffusion–reaction equations which
are quite satisfactory in comparison with experimental data. We will also find that the time evolution of the
lesion depth in the cases of acid transport, normal diffusion and subdiffusion, is a power function of time
xf ∼ tα/2. This result is also in accordance with the experimental data.
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1 INTRODUCTION

Diffusion is the natural process of the spontaneous spreading of a substance. Diffusion is characterized
by the time dependence of the mean–square displacement of a random walker which reads

〈

(∆x)2(t)
〉

=
Dαt

α/Γ(1 + α), whereα is a diffusion parameter,Dα is a diffusion coefficient measured in the units of
m2/sα andΓ(x) denotes the Gamma function, Metzler and Klafter (2000). For0 < α < 1 we are dealing
with subdiffusion; forα = 1, we have a situation of normal diffusion, and forα > 1, we encounter superdif-
fusion. Subdiffusion occurs in media in which the movement of the random walker is strongly hindered due to
the complex structure of a medium and such subdiffusion occurs, among other things, in porous media or gels,
Kosztołowicz et al. (2005). Normal diffusion as well as anomalous diffusion are both described by a partial
differential equation (in the latter case with a fractional time derivative).

Now we present the description of the process of caries which is based on the series of papers cited in
Kosztołowicz and Lewandowska (2006); Lewandowska and Kosztołowicz (2012). The formation of carious
lesions in the enamel starts when the concentration of organic acids in the dental plaque reaches a sufficient
value and the pH of the dental plaque lowers to below an appropriate point. Then organic acids diffuse into the
enamel and react with the mineral to form soluble calcium ions and phosphate ions (or complexes). It is com-
monly accepted that the products of the reaction diffuse out of the enamel. Organic acids (e.g. acetic or lactic)
are produced in the dental plaque by oral microorganisms that metabolize the simple sugars coming from the
diet. In the first stage of carious lesion formation an apparently intact surface layer can be created. This is
the layer where the loss of mineral is small in comparison to the content of the mineral in the sound enamel.
First of all, this loss reveals the formation of tiny holes. Two possible mechanisms responsible for creating the
surface layer have been proposed. Firstly, the appearance of protective agents prevents acids from dissolving
the enamel. Second, the surface layer exists as a result of the combination of dissolution and reprecipitation
processes. The thickness of this layer reaches maximum value and remains unchanged later on. Dissolution
of subsurface mineral (situated below the apparently intact surface layer) occurs in the second stage of the for-
mation of the carious lesion according to the chemical formulaA+B → ∅(inert) whereA denotes a mobile
substance andB—a static substance. However, before the dissolution of the enamel, acids have to reach the
enamels interior. The enamel is built out of crystal of hydroxyapatite (HA). These crystals are organized in
larger forms called prisms. The intercrystalline and interprismatic spaces of the enamel are filled with water.
Thus, we can say that the enamel is similar to a porous medium. The acids diffuse from dental plaque through
pores of enamel below the surface layer. The acids can diffuse in dissociated or undissociated forms that de-
pend on the pH of the dental plaque. The transport of ions inside the enamel is diffusive, a process which is
motivated by the small diameter of hydrogen ions compared to the size of the enamel tubules, whereas when
large acid molecules move inside the enamel, subdiffusion occurs.

To date, many scientists have focused their attention on the theoretical description of the process of caries.
However, the problem is not simply in regard to the complexly of this process. Namely, a lot of factors can
influence the carious lesion process such as age, environment, hygiene, the diet,etc., Zero (1999). For this
reason, assumptions which can oversimplify the problem are usually made. Some research has considered only
one of the equations from among (1) and (2). Additionally, the reaction termRα was taken in an oversimplified
form, in which only one reactant is taken into account. For example, in the paper of Wu et al. (1976), Eq. (1)
alone was studied, with the reaction term in the formR = k(Cs − C), whereCs is a constant related to
the solubility of the solute. In Maksimovskii et al. (1990) the reaction term was chosen in the formR(x, t) =
k(x, t)A(x, t). A model based on Eq. (2) alone was studied in Gray (1966) withR(x, t) = kCn, and in Bollet-
Quivogne et al. (2005) withR(x, t) = k(Cs − C). Equations (1) and (2) together were considered in Shi
and Erickson (2001) withR(x, t) = kA. We should add here that the models based only on the normal
diffusion equation without chemical reactions included through the ‘effective’ diffusion coefficient were also
considered, Chu et al. (1989). Very special theoretical diffusive models were used to describe some caries
characteristics, such as the time evolution of the caries depth, Christoffersen and Arends (1982), and the
concentration profiles of hydrogen ions, Maksimovskii et al. (1990) inside the enamel in a stationary state. As
far as we know, a model which takes into account the time evolutions of both the concentration of a mobile
substance and the concentration of a static substance have been proposed for the first time in Lewandowska
and Kosztołowicz (2012).

In this paper, our purpose is to present a theoretical model of carious lesion process which is more realistic,
general and which satisfactorily approximates the experimental data. Unfortunately, the experimental data
concerning different aspects of carious lesions is very infrequent, especially in that it is difficult to find the
enamel concentration profiles. In our model we use Eq. (1) which describes the transport of mobile sub-
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stanceA and chemical reaction with static substanceB, Eq. (2) which only describes the reaction of static
substanceB with the mobile substanceA and the reaction term (3), which describes chemical reactions be-
tween substancesA andB. In particular, we propose two theoretical models of the carious lesion process.
One of them describes diffusive transport of a dissociated acid and its chemical reaction with the mineral,
the second one—the subdiffusive transport of an undissociated acid and its chemical reaction with the min-
eral. (Sub)diffusion–reaction equations, which we use in modelling the transport of hydrogen ions or acid
molecules and their reactions with static hydroxyapatite are nonlinear partial differential equations (in the case
of subdiffusion with a fractional time derivative). As far as we know, the general solutions,i.e. for arbitrary
parameter values, to (sub)diffusion–reaction equations have not yet been found. Thus, in order to simplify
calculations, various approximations, such as the quasistationary approximation, the scaling method or the
perturbation method, are used.

Below, we consider the normal diffusion–reaction and the subdiffusion–reaction cases separately, with regard
for different calculation techniques. In the case of the diffusive transport of dissociated acid we use the per-
turbation method in order to find the concentration profiles of the enamel mineral and the time evolution of
the lesion depth. In the case of the subdiffusive transport of acid in an undissociated form we find the time
evolution of the lesion depth. In both cases of acid transport, normal diffusion and subdiffusion, is a power
function of timexf ∼ tα/2.

2 MODEL

The system under study is three–dimensional, but it is assumed to be homogeneous in the plane perpendicular
to thex–axis, which is normal for the surface of a tooth. Thus, the system can be treated as one–dimensional.
The scheme of the system under consideration is presented in Fig. 1 which is based on the qualitative de-
scription and the plots of experimental concentration profiles given in the papers cited in Kosztołowicz and
Lewandowska (2006); Lewandowska and Kosztołowicz (2012). In Fig. 1 we can discern two regions denoted

xx=dx=0

CB
I II

xf

CA,I
CA,II

C

Figure 1. The schematic view of the system; the solid line represents the concentration of the static mineral,
and the dashed one—the concentration of the acid. A more detailed description is in the text.

as I and II, respectively. These regions are built of static substanceB and—at the initial moment—are free of
any mobile substance. Region I corresponds with the surface layer of the enamel (which, as already mentioned,
is not created in all caries). Region II is called a subsurface layer. Within this layer, chemical reactions occur
and the amount of substanceB decreases as a result of the demineralization process. The mobile substance is
denoted byA, I in region I and byA, II in region II. SubstanceA only moves (sub)diffusively through region
I, whereas, in region II (sub)diffusion and chemical reactions occur.

As already mentioned, substancesA andB are separated at the initial moment. Thus, the initial conditions
readCA,I(x, 0) = 0 for x ∈ (0, d), CA,II(x, 0) = 0 for x ∈ (d,∞) andCB(x, 0) = C0B for x ∈ (0,∞).
We assume that the reservoir of substanceA occurs forx < 0. Therefore, the concentration of substance
A is constant atx = 0. Moreover, the thickness of regions I and II composes a small part of the enamel
and it is quite obvious that concentrations and fluxes of substanceA are continuous at the border between
regions I and II. So, we take the following boundary conditionsCA(0, t) = C0A, CA,I(d, t) = CA,II(d, t),
∂CA,I(x, t)/∂x|x=d = ∂CA,II(x, t)/∂x|x=d andCA,II(∞, t) = 0.
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Equations which describe the subdiffusive transport of acid molecules and their reaction with static hydroxya-
patite are nonlinear partial differential equations with a fractional derivative

∂CA,I(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2CA,I(x, t)

∂x2
, x ∈ (0, d) , (4)

∂CA,II(x, t)

∂t
= Dα

∂1−α

∂t1−α

∂2CA,II(x, t)

∂x2
−Rα(x, t) , x ∈ (d,∞) , (5)

∂CB(x, t)

∂t
= −Rα(x, t) , x ∈ (d,∞) (6)

wheredαf(t)/dtα denotes the Riemann-Liouville fractional time derivative which is defined as forα > 0

dαf(t)/dtα = (1/Γ(n − α))(dn/dtn)
∫ t

0
dt′f(t′)/(t − t′)1+α−n, wheren is the smallest natural number

which fulfils the equationn − α > 0; Dα is a subdiffusion coefficient and the reaction term takes the form
Rα(x, t) = ∂1−αkCA,II(x, t)CB(x, t)/∂t

1−α, andk is the reaction rate constant. Forα = 1 we obtain
equations describing a normal diffusion–reaction system.

Below, we study the two detailed models (normal diffusion and subdiffusion) which satisfactorily approximate
the experimental data, Kosztołowicz and Lewandowska (2006); Lewandowska and Kosztołowicz (2012). In
the first model utilizing normal diffusion–reaction equations (Eqs. (4)–(6) forα = 1), we use the perturbation
method in order to find the enamel concentration profiles. The obtained theoretical profiles fit the experimental
concentrations well, thus we present this model in sec. 3. In the second model we employ subdiffusion–
reaction equations (Eqs. (4)–(6) for0 < α < 1) and we determine the time evolution of the caries depth by
means of the scaling method. The obtained relation also fits the experimental data well. We present this model
in sec. 4.

3 NORMAL DIFFUSION MODEL

In this section we will study a system in which substanceA moves diffusively within the regions I and II. This
corresponds to a situation in which organic acid occurs in a dissociated form. Equations describing the system
are (4)–(6) forα = 1. As already mentioned, these equations are nonlinear partial differential equations and
their general solutions remain unknown (except in very special cases). Therefore, we use the perturbation
method in order to solve the above equations, Taitelbaum et al. (1996).

The perturbation method is usually used when equations are in the form∂f/∂x = F(f)+εG(f), whereε is a
dimensionless small parameter and it is assumed that the solution to the equation∂f0/∂x = F(f0) is known.
Then, the solution to equation∂f/∂x = F(f) + εG(f) is a power series with respect to the parameterε and
readsf =

∑

∞

n=0
εnfn.

We have solved Eqs. (4)–(6) by means of the perturbation method. The details of calculation are presented
in Lewandowska and Kosztołowicz (2012). Below, we only present the concentration profiles of a mobile
substanceA, I in region I andA, II in region II, and a static substanceB calculated as a sum of the zeroth
order and first order concentrations.

CA,I(x, t) = C0Aerfc

(

x

2
√
D1t

)

+ kC0B

[

1

4

(

t+
(2d+ x)2

2D1

)

erfc

(

2d+ x

2
√
D1t

)

− (2d+ x)
√
t√

πD1

e
−

(2d+x)2

4D1t

−
(

t+
(2d− x)2

2D1

)

erfc

(

2d− x

2
√
D1t

)

+
(2d− x)

√
t√

πD1

e−
(2d−x)2

4D1t

]

, (7)

CA,II(x, t) = C0Aerfc

(

x

2
√
D1t

)

+ kC0B

[

1

4

(

t+
(2d+ x)2

2D1

)

erfc

(

2d+ x

2
√
D1t

)

− (2d+ x)
√
t√

πD1

e−
(2d+x)2

4D1t

−
(

t+
(4d− 3x)x

2D1

)

erfc

(

x

2
√
D1t

)

+
(4d− 3x)

√
t√

πD1

e
−

(2d−x)2

4D1t

]

, (8)

CB(x, t) = C0B − C0AC0Bk

[(

t+
x2

2D1

)

erfc

(

x

2
√
D1t

)

− x

√

t

πD1

e−x2/4D1t

]

, (9)

whereerfc(u) = (2/
√
π)

∫

∞

u
exp(−η2)dη is the complementary error function. These solutions are in quan-

titatively and qualitatively good agreement with the experimental data, see Figs. 2 and 3 in Lewandowska and
Kosztołowicz (2012). Thus, the perturbation method including in its calculation the zeroth order and the first
order alone presents well enough in modelling the carious lesion process.
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Figure 2. The schematic view of the subdiffusion–reaction system;R denotes the reaction region,WR—the
reaction region width and ‘Dif’ stands for the diffusion region.

4 SUBDIFFUSION MODEL

Below we will study a system in which the surface layer does not occur, thus,x = d = 0 and the mobile
substanceA moves subdiffusively within region II. This corresponds to a situation in which an organic acid
occurs in an undissociated form. Equations describing such a system are (5) and (6). The initial conditions
and the boundary conditions read

CA(x, 0) = 0 , CB(x, 0) = C0B , and CA(0, t) = C0A , CA(∞, t) = 0 . (10)

It should be mentioned here that when the subdiffusion–reaction process starts, characteristic regions and
points appear in the system (see Fig. 2), Kosztołowicz and Lewandowska (2008) and references cited therein.
One of these characteristic regions is reaction regionR which is a part of the system in which the reaction is
the most intense. Outside this region we can assumeRα(x, t) ≈ 0. Thus, in this part of the system, which is
called the diffusion region ‘Dif’, only a subdiffusive transport occurs. The most characteristic point inside the
reaction region is reaction frontxf , which can be defined as a point at which the reaction termRα reaches its
maximum. The reaction front can be identified with the depth of the carious lesion.

As already mentioned, subdiffusion–reaction equations are nonlinear partial differential equations with frac-
tional time derivatives. Solutions to these equations have not yet been found, that is, with the exception of a
few very special cases. For the subdiffusion–reaction system with a static substance and a mobile substance
we have calculated the concentration profiles using the scaling method, Kosztołowicz et al. (2013). For the
case of both mobile substances we have found the concentration profiles in the diffusion region and the exact
formula for the time evolution of the reaction front by means of the quasistationary method, Kosztołowicz and
Lewandowska (2008). However, we cannot obtain the solutions to subdiffusion–reaction equations in the case
of one static and one mobile substance, by merely setting one of the subdiffusion coefficients equal to zero, as
this gives a system without any chemical reactions. Thus, in order to find solutions to Eqs. (5) and (6) we use
the scaling method, Bazant and Stone (2000).

The idea of the scaling method is as follows. Let us assume that the scale relationsx′ = aδx, t′ = aβt and
C(x′, t′) = aγC(x, t), wherea is a positive constant andδ, β andγ are unknown parameters, are valid. If
the equations describing the system, the boundary conditions and the initial conditions do not change their
forms under these transformations, then the solutions can be expressed by the following functionC(x, t) =
tγ/βΦ(η), whereη is an invariant combination of the variablesx and t in the form such as, for example,
η1 = (x+2νtσ)/tδ/β or η2 = (x+2νtσ)/2tδ/β, whereν is a constant andσ—an unknown parameter. Next,
after substitutingC(x, t) = tγ/βΦ(η) into the equations under consideration, the values of parametersδ, β, γ
andσ can be determined by comparison between the appropriate exponents of dominating terms.

In the paper Kosztołowicz and Lewandowska (2006), in which we have studied the system describing by
Eqs. (5), (6) and (10) all calculation details can be found. We should mention here, that functions present in dif-
ferent parts of the subdiffusion–reaction system, all scale according to different rules. This has been confirmed
by the numerical calculations. Therefore, in the subdiffusion–reaction system, with one static substance,e.g.
B, the concentrations within the reaction region scales according to the formulaCA(x, t) = t−α/2C̃(η1) and
CB(x, t) = C̃(η1) whereas the concentration within the diffusion region isCA(x, t) = C̃(η2). Moreover, all
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Figure 3. Carious lesion depth versus time. The circles represent the experimental data whereas the solid line
is the plot of the power function (12).

calculations are complicated and greatly tiresome because of the presence of fractional derivatives. The main
result obtained in that paper is the derivation of the following relation

xf ∼ tα/2 . (11)

Thus, the time evolution of the reaction front in the system with one static substance and one mobile substance
is the power function with an exponent depending on the subdiffusion parameterα alone. Moreover, the time
evolution of the reaction front (11) does not depend on the form of the reaction term, thus it appears to be a
general property of the subdiffusion–reaction process. In the following, we identify the reaction front with the
caries depth.

In Fig. 3 we present the time evolution of the caries depth which was measured experimentally (circles) and
which we have taken from Featherstone et al. (1979), and the power function (solid line) calculated form the
formula

xf = 30.11× t0.38 , (12)

which is the best fit to the experimental data obtained by means of the least squares method. Comparing the
functions (11) and (12) we findα = 0.76, which means that subdiffusion occurs in the enamel in the case
under study.

5 CONCLUSIONS

The theoretical model based on Eqs. (4)–(6) has a general character. The models, which have been presented
here, are its particular cases, and have been adopted in order to approximate the experimental data. As al-
ready mentioned, the carious lesion progress has an individual character and depends on many factors. In
our opinion, the theoretical models presented here can be easily adjusted to these individual situations by, for
example, the modification of the reaction term, the subdiffusion parameter, the (sub)diffusion coefficient, etc.
or by making parameters dependent on time. In this way, many factors, such as more complicated chemical
reactions, the attendance of inhibitors and so on, can be included in the model. Moreover, in the cases of
equations which can be too complicated for analytical treatment, numerical methods can be used. The details
of this method and numerical solutions to subdiffusion–reaction equations are presented in Lewandowska and
Kosztołowicz (2007); Kosztołowicz and Lewandowska (2008).

We have shown that the perturbation method can be useful in the modelling of carious lesion progress. A
comparison of the analytic solutions with the experimental data allow us to determine the value of the acid
ions diffusion coefficient, namelyD1 = 2.2 × 10−10 cm3/s, Lewandowska and Kosztołowicz (2012). We
should note that the obtained value of the diffusion coefficient takes ‘typical’ values. For example it was
reported in van Dijk J.W. et al. (1983) thatD ∝ 10−8–10−13 cm2/s for several substances diffusing in the
tooth enamel.

We have shown that the carious lesion depth evolves over time asxf ∼ tα/2 with α ≤ 1. This relation can
be used in order to identify a kind of transport process occurring in the enamel. We fit formula (11) with
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the experimental data presenting the caries depth, which we discovered in the literature. We have found the
carious lesion depth evolving over timexf ∼ tα/2, where0 < α < 1 (this means the subdiffusive transport of
acids), as well as the carious lesion depth evolving over timexf ∼ t1/2 (this means the diffusive transport of
acids). Let us also remember here that acids can be transported diffusively (dissociated acids) or subdiffusively
(undissociated acids). The form of acids, dissociated or undissociated, depends on the pH of the dental plaque.
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