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Abstract: Agricultural soils have been suggested to sequester soil organic carbon (SOC) through adopting 
conservation agricultural practices such as residue retention, no-till and increasing cropping complexity. At 
regional or continental scales, however, it is a significant challenge to quantify the changes in SOC stock and 
the corresponding uncertainty associated with variation of cropping systems and environmental conditions at 
high spatiotemporal resolution. Here, our aim was to predict changes in SOC stock after adopting different 
cropping systems under optimal management for sequestering soil carbon (i.e., no nutrient deficiency and 
100% residue retention) and quantify the relevant uncertainties at regional scale.  Using the farming systems 
model APSIM, we simulated changes in SOC stocks for a 20-year period from 1990 to 2010 under a total of 
59 cropping systems at 613 references sites across the Australian cereal-growing regions. These cropping 
systems were identified based on GRDC agro-ecological zones through expert consultation. To further 
understand the effects of cropping system in terms of carbon input on SOC dynamics, those cropping systems 
were divided into three categories to represent low-, medium- and high-input cropping systems in terms of 
carbon input. The simulation results indicated that, on average, the Australian agricultural soils could gain 
0.19 t C ha–1 yr–1 under optimal management. However, the predicted change in SOC stocks had high 
variability among the three carbon-input categories. Generally, cropping systems with higher carbon input 
had higher efficiency for reducing SOC losses or enhancing SOC gains compared to lower carbon-input 
systems. For the same category of cropping system, its ability to reduce SOC losses or enhance SOC gains 
varied across difference GRDC zones. For example, in Qld Central zone where has higher temperature, the 
SOC experienced loss regardless of cropping system. In SA Vic High Rainfall zone where has lower 
temperature and higher rainfall, the SOC showed increase. This result indicated the importance of local soil 
and climate conditions to regulate the SOC dynamics under different cropping systems.  

A Monte Carlo approach was applied to assess the uncertainty induced by cropping system and scaling of 
point results to GRDC zone. Averaged across all representative cropping systems, the predicted mean SOC 
change was –0.1 t C ha–1 yr–1 with the 95% confidence interval ranging from –0.22 to +0.007 t C ha–1 yr–1 in 
Qld Central. In NSW NW/Qld SW, the predicted SOC change was zero with the 95% confidence interval 
ranging from –0.05 to +0.05 t C ha–1 yr–1. In other zones, the predicted SOC change was positive. In Vic 
High Rainfall zones, the SOC change reached the greatest increase of +0.44 t C ha–1 yr–1 with the 95% 
confidence interval ranging from +0.22 to +0.66 t C ha–1 yr–1. In Western Australia, the predicted SOC 
change was generally positive across all representative cropping systems. There was significant difference 
between different cropping system categories. In general, cropping systems with higher carbon input could 
reduce the SOC losses or enhance SOC gains compared to cropping systems with lower carbon input. In 
three zones of Western Australia (WA Northern, WA Eastern and WA Central), however, the predicted 
average SOC change under high-input cropping systems was lower than that under medium-input cropping 
systems. We further calculated the contribution of cropping systems and scaling to overall uncertainty. The 
simulation indicated that the variability of cropping system accounted for ~30% of the overall uncertainty. 
The greatest contribution of cropping system change to uncertainty in simulated SOC (>60%) was observed 
in three GRDC zones, i.e., NSW NW/Qld SW, NSW NW/Qld SE, and WA Northern. Our results suggested 
that the uncertainty in scaling of point results to regional scale is dominant in the overall uncertainty. More 
detailed soil databases and information on cropping systems are needed for reliable prediction of SOC 
dynamics in agricultural soils at regional scale.  

Keywords: APSIM, carbon input, crop sequence, Monte Carlo simulation, soil carbon change, 
uncertainty analysis   
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1. INTRODUCTION 

Cultivation of natural soils has induced 20-70% declines in soil organic carbon (SOC) in Australia (Luo et 
al., 2010, Dalal & Chan, 2001). Conservation agricultural practices have been widely suggested to increase 
SOC in agricultural soils thereby mitigating greenhouse gas emission (Dalal and Chan, 2001, Luo et al., 
2010). In addition, many field experimental studies showed that SOC could be significantly affected by the 
type of cropping systems with the varying impact depending on rotation types and environmental conditions. 
Accurate quantification of the effect of cropping system on SOC is however a challenge due to the diversity 
of cropping systems. In Australia, Unkovich et al. (2009) suggested that a total of 22 crops should be 
included in carbon accounting system in order to account for > 99% of the sowing area in all states. But how 
these crops will be planted in crop rotations vary in time and space.  Therefore, more reliable prediction of 
SOC stock will require quantification of the uncertainty associated with the input of carbon to soil derived 
from variations in cropping systems and environmental conditions at the desired spatial and temporal 
resolutions.  

In this study, we used the widely tested process-based APSIM model (Keating et al., 2003) to conduct 
simulations on change in SOC stocks under 59 cropping systems at 613 reference sites located in Australia’s 
cereal-growing regions. Those cropping systems included nine major crops sown in Australia, which were 
identified based on agro-ecological zones defined by Grain Research and Development Corporation (GRDC). 
Our objective was to estimate potential changes in SOC stock in each agro-ecological zone under the most 
representative cropping systems together with optimal management, i.e., 100% residue retention and no 
nutrient deficiency. In addition, we assessed the uncertainty of estimated changes in SOC stock induced by 
possible changes in cropping system and scaled the point results to GRDC zones.  

2. MATERIALS AND METHODS 
 

2.1. Data sources 

The soil profile data for 613 reference sites were obtained from the Agricultural Production Systems 
Research Unit) database and the sites are distributed throughout the study region (available at 
http://www.asris.csiro.au/themes/model.html, Fig 1). These data contain the full soil profile characterization 
required to run the APSIM model. Twenty years of daily weather data from 1990 to 2010 was acquired for 
the meteorological station located closest to each of the 613 soil sites from the SILO Patched Point Dataset 
(http://www.longpaddock.qld.gov.au/silo/).  

2.2. Cropping systems 

 

Figure 1 The location of the 613 reference soil sites (black open circles) and the boundary of the 13 GRDC 
agro-ecological zones in Australia. ACT, Australian Capital Territory; Qld, Queensland; NSW, New South 
Wales; NT, Northern Territory, SA, South Australia; Tas, Tasmania; Vic, Victoria; WA, Western Australia. 
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Information on cropping systems was collated based on the GRDC agro-ecological zones. These GRDC 
zones were classified according to the dominant crop rotations and agricultural management regimes as well 
as edaphic and climatic conditions. Five of the 18 zones were excluded in this study due to either limited 
cropping areas or a lack of soil profile data. The remaining 13 zones cover most of the whole eastern and 
western grain growing belt, and more than 95% of the cropped area in Australia (Fig. 1). The number of soil 
sites in each zone ranged from 5 to 137 (Table 1).  

No detailed records on the crop rotations were available due to the spatial variations resulting from 
significant inter-annual climate variability and frequent resource limitation at farm level. Little evidence 
existed to suggest that any farmers would continuously implement a fixed crop rotations over time. 
Therefore, for the purpose of modelling SOC dynamics across the grain regions, representative crop rotations 
(or crop-pasture rotations) were constructed based on consultation with agronomists and agricultural 
consultants and on collation of the most frequently reported cropping rotations in each of the GRDC zones. 
Each of the rotations constructed represented a fixed rotation of crops and/or pastures. Overall, nine crops, 
i.e., wheat, barley, canola, lupin, chickpea, fieldpea, fababean, sorghum and cotton, were included in those 
rotations. They were the major crops and account for the majority of the total cropping area of broadacre 
crops in Australia (Unkovich et al., 2009). Lucerne was assumed in the crop-pasture rotations to represent the 
perennial pasture. 

Those representative cropping systems were further divided to three categories, i.e., low-input, medium-input 
and high-input cropping systems in terms of carbon input (IPCC, 2003; Wang et al., 2013). Low-input 
cropping systems were characterised by low residue return due to removal of residues, frequent bare-
fallowing or production of crops yielding low residues (e.g., cotton). Medium-input rotations included annual 
cropping with cereal where all crop residues were returned to the field. High-input rotations included 
significantly greater crop residue yields, use of green manure, cover crops, improved vegetated fallows, 
frequent use of perennial grasses in annual crop rotations (IPCC, 2003). The number of cropping systems in 
each zone is shown in Table 1. More details on the cropping systems in each zone can be found in Wang et 
al. (2013).  

2.3. APSIM simulations 

APSIM v7.3 was used to predict the changes in SOC stocks under the identified cropping systems and under 
a simplified continuous wheat system representing an annual cereal cropping system. APSIM simulates crop 
growth and soil processes on a daily time-step in response to climate (i.e., temperature, rainfall, and 
radiation), soil water availability, and soil nutrient status (Keating et al., 2003, Probert et al., 2005, Luo et al, 
2011). APSIM allows flexible specification of management options like crop and rotation type, tillage, 
residue management, fertilization and irrigation. The ability of APSIM to simulate SOC dynamics has been 
verified under different cropping systems and management in a number of studies (Probert et al., 2005, Huth 
et al., 2010, Luo et al., 2011).  

Table 1 The number of soil sites (ns) and cropping systems (nc) in each zone, and the percentage of total 
uncertainty associated with the cropping system and scaling of results from points to the GRDC zone.  

GRDC zones ns nc Cropping system (%) Scaling (%) 

Qld Central 9 6 27 73 
NSW NW/Qld SW 27 10 60 40 
NSW NE/Qld SE 137 7 62 38 
NSW Central 22 13 45 55 
NSW Vic Slopes 68 7 33 67 
SA Midnorth-Lower Yorke Eyre 110 4 16 84 
SA Vic Mallee 30 4 3 97 
SA Vic Bordertown-Wimmera 90 3 52 48 
Vic High Rainfall 5 2 24 76 
WA Sandplain 24 3 20 80 
WA Northern 59 4 61 39 
WA Eastern 7 4 25 75 
WA Central 25 2 12 88 
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For each of the crop rotations simulated, crops were sown every year depending on rainfall and soil water 
content, which varied between regions and with the crops included in the rotation. Cultivars were assigned 
according to sowing date—the earlier the sowing date, the later the maturity type of the crop cultivar. For 
simplicity, three cultivars for each crop representing early, middle and later maturity cultivars were selected 
from the listed default cultivars in the parameter files released with the APSIM v7.3 model for each zone. For 
perennial lucerne, however, only one cultivar (i.e., trifecta) was used. Crop residues (stem plus leaf) after 
harvest were retained in the system. Lucerne was sown and removed after harvest and before sowing of 
annual crops in the corresponding rotations, respectively. Harvest to the height of 10 cm was assumed to 
occur each time lucerne reached the flowering stage.   

2.4. Data assessment and uncertainty analysis 

Soil organic carbon stocks in the top 0.3 m soil profile were simulated every year for each soil site and each 
cropping system. The change in SOC stocks (Cc) was calculated as the average annual change in SOC stock 
during the 20-year simulation for each zone, and for each cropping system category (i.e., low-, medium-, and 
high-input) and putting all cropping systems together (i.e., all input). The uncertainty analysis was conducted 
for individual cropping system categories. For simplicity, the cropping system category is not shown in the 
notation. As the number of simulations varied significantly in each GRDC zone for each cropping system, we 
used a Monte Carlo approach to generate an equal number of replicates for uncertainty analysis. To do this, 
in each GRDC zone, the mean (μ) and standard deviation (σ) of Cc for each cropping system category and for 
all cropping systems were calculated to construct a normal probability density function N(μ, σ2) assuming the 
resultant values of Cc followed a normal distribution. A Monte Carlo approach was used to generate 1000 
replicates which were used to conduct an uncertainty analysis as follows. In each GRDC zone, first, an 
estimate θ for each Monte Carlo replicate i was computed as: 

ߠ  	= ଵ × ∑ ܥ∆ ,  (1) 

where n was the number of soil sites in the GRDC zone of interest, and ∆ܥ  the change in SOC for the kth soil 
site and sampled from the corresponding N(μ, σ2). Then, the estimation was completed by computing the 
average of the Monte Carlo replicates: 

	ߠ  = ଵ × ∑ .ୀଵߠ  (2) 

The variance (V1) of the m (i.e., 1000) Monte Carlo replicates includes uncertainties associated with the 
model inputs and structure (Ogle et al., 2010), i.e., cropping systems in this study, and was calculated as:  

 ଵܸ = ∑ (ఏିఏ)మసభିଵ .   (3) 
Additional uncertainty was associated with scaling of results from soil sites to the GRDC zone. A standard 
variance estimator for a stratified two-stage sample design (V2) was calculated to address this uncertainty 
(Ogle et al., 2010):  

 ଶܸ = ∑ ቀ∆ೖ∗ିభ×∑ ∆ೖ∗ೖ∈ೄ ቁೖ∈ೄ మ×(ିଵ) ,  (4) 
where Sh was the set of soil sites in GRCD zone h, and ∆ܥ∗ was given by: 

∗ܥ∆  = ଵ × ∑ ܥ∆ ,ୀଵ  (5) 
and was the average SOC stock change rate (across m Monte Carlo replicates) for the kth soil site at the 
corresponding GRDC zone. The total variance for the change in SOC was estimated by combining the two 
components, i.e., VT = V1 + V2. The square root of the VT (i.e., standard deviation) was used to construct a 
95% confidence interval under normality assumption. For all inputs, the contribution of the variation of 
cropping systems to total uncertainty was further calculated through dividing V1 by VT.   
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RESULTS 

At the national scale, averaging across all the representative cropping systems (e.g., all input in Fig. 2A ), the 
average predicted Cc was +0.19 t C ha–1 yr–1 with 2.5%, 50% and 97.5% quantiles of –0.19, +0.23 and +0.49 
t C ha–1 yr–1, respectively. Cropping systems under different carbon input categories had a significant effect 
(F(2,3727) = 771.6, P < 0.001) on the predicted Cc (Fig. 2). Under the high-input cropping systems, the average 
Cc was +0.29 t C ha–1 yr–1 with 2.5%, 50% and 97.5% quantiles of –0.01, +0.30 and +0.51 t C ha–1 yr–1, 
respectively (Fig. 2B). Under the medium-input cropping systems, this was +0.19 t C ha–1 yr–1 with 2.5%, 
50% and 97.5% quantiles of –0.16, +0.22 and +0.48 t C ha–1 yr–1, respectively (Fig. 2C). Under low-input 
systems, this was +0.03 t C ha–1 yr–1 with 2.5%, 50% and 97.5% quantiles of –0.25, +0.03 and +0.34 t C ha–1 
yr–1, respectively (Fig. 2D).   

For each zone, the predicted average Cc and its uncertainty are shown in Fig 3. Averaged across all 
representative cropping systems (i.e., all input), the predicted mean Cc was –0.1 t C ha–1 yr–1 with the 95% 
confidence interval ranging from –0.22 to +0.007 t C ha–1 yr–1 in Qld Central (Fig. 3A). In NSW NW/Qld 
SW, the predicted Cc was zero with the 95% confidence interval ranging from –0.05 to +0.05 t C ha–1 yr–1 
(Fig. 3B). In other zones, the predicted Cc was positive. Generally, in southern and eastern Australia, the 
simulated Cc increased roughly following the rainfall amount from northwest to southeast. In Vic High 
Rainfall zones, the Cc reached the greatest increase of +0.44 t C ha–1 yr–1 with the 95% confidence interval 
ranging from +0.22 to +0.66 t C ha–1 yr–1 (Fig. 3I). In Western Australia, the predicted Cc was generally 
positive across all representative cropping systems (Fig.3J, K, L and M). There was significant difference 
between different cropping system categories (Fig. 3).  In general, cropping systems with higher carbon input 
could reduce the SOC losses or enhance SOC gains compared to cropping systems with lower carbon input. 
In three zones of Western Australia (WA Northern, WA Eastern and WA Central), however, the predicted 
average Cc under high-input cropping systems was lower than that under medium-input cropping systems 
(Fig. 3K, L and M).    

 

Figure 2 The probability density distribution of soil organic carbon changes under all representative 
cropping systems (A), high-input (B), medium-input (C) and low-input (D) rotations at the 613 reference 

sites. The vertical grey lines show the mean of the distribution. 
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The contribution of cropping system to uncertainty ranged from 3% to 62% in the studied 13 agro-ecological 
zones (Table 1). In NSW NW/Qld SW, NSW NW/Qld SE, and WA Northern, the cropping system accounted 
for more than 60% of the overall uncertainty. In SA Vic Mallee and WA Central, the cropping system 
accounted for less than 20% of the over uncertainty. In other zones, the cropping systems accounted for 20–
60% of the overall uncertainty. Averaging across all zones, the contribution of cropping system to overall 
uncertainty was 34%.  

3. DISCUSSION AND CONCLUSIONS 

Our simulation results suggested that soils in Australia’s croplands may be able to accumulate SOC if best 
management practices could be adopted, i.e., optimal application of fertilizers and 100% residue retention, 

 

Figure 3 Mean annual soil organic carbon change under different cropping systems in terms of carbon inputs 
with optimal management in the 13 agro-ecological zones of Australia. (A), Qld Central; (B) NSW NW/Qld 

SW; (C) NSW NE/Qld SE; (D), NSW Central; (E), NSW Vic Slopes; (F), SA Vic Mallee; (G), SA Vic 
Bordertown-Wimmera; (H), SA Midnorth-Lower Yorke Eyre; (I), Vic High Rainfall; (J), WA Sandplain; (K), 

WA Northern; (L), WA Eastern; (M), WA Central. Bars show the 95% confidence interval. 
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under representative cropping systems. At the national scale, the average predicted change in SOC stocks 
was +0.19 t C ha–1 yr–1 during the simulated period. This result suggests that agricultural soils of Australia 
may provide a net sink of atmospheric carbon dioxide if conservation agricultural practices are adopted 
consistent with statements made by Dalal & Chan (2001) and Luo et al. (2013). However, there was large 
uncertainty in the predicted SOC change due to variations in cropping systems and when scaling the point 
results to regional scale. For example, the predicted SOC change ranged from gains to large losses in those 
zones with higher temperature and/or lower rainfall (e.g., Qld Central). In those regions, soil water 
availability would limit the overall production of different cropping systems thereby carbon input to the soil.  

Quantifying uncertainties is necessary to determine the confidence that can be placed in model predictions. 
Results indicated that at a regional scale, on average, uncertainty associated with scaling of point results was 
greater than the uncertainty induced by variation of cropping systems. Increasing the number of sites with 
detailed soil information will likely reduce uncertainty in scaling. In this study, the uncertainties associated 
with model structure including algorithms and parameterization (e.g., initial composition of SOC pools) were 
not considered. Such uncertainties have been suggested to dominate the total uncertainties associated with 
upscaling point results to a regional scale (Ogle et al., 2010). Long-term temporal monitoring of soil carbon 
stocks is required to further develop the relationship between measurement and model results help quantify 
uncertainty derived from model algorithms and structure.    
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