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Abstract: Catchment-scale hydrologic and diffuse source pollution models simulating a catchment are 
useful analysis tools to understand problems and find solutions through simulation of BMPs for particular 
catchment and agronomic settings. However, developing reliable catchment model and validating them on 
real-world catchment with monitored data is challenging. In this regard, model calibration and uncertainty 
analysis help to evaluate the ability of the model to sufficiently predict streamflow and constituent yields for 
specific applications. Complex physics-based distributed models contain many parameters that can 
complicate calibration process. In addition, the model when includes multi-variable at multi-site with multi-
objective functions introduces more complexity to the calibration process. Over-parameterization is a well-
known problem in such distributed model. Sensitivity analysis methods reducing the number of parameters to 
be adjusted during calibration are important for simplifying the use of these models. The objective of this 
paper is to perform a sensitivity analysis for multiple variables (streamflow, sediment and nutrients) at three 
sites on a SWAT model developed in the agricultural part of the Yarra River catchment, Victoria (Australia) 
so that the model can be calibrated efficiently for water quality analysis purposes. 

SWAT is a continuous physics-based distributed model that operates on a daily time-step. The SWAT model 
requires the following data types: digital elevation model (DEM), land use, soil, land use management, daily 
climate, streamflow and water quality data. Australian catchments are data-rich in terms of hydroclimatic 
data, but data-poor especially for water quality and land use management. For this study, all the data were 
collected from local organizations except DEM. Water quality and land use management data were most 
sparse. All input files for the model were organized and assembled following the guidelines of ArcSWAT 
interface of the SWAT 2005 version. The study area was delineated into 51 sub-catchments and 431 
hydrological response units (HRU), which are unique combinations of land use, soil type and slope. The 
main methods used in modeling the hydrologic processes in SWAT were curve number method for runoff 
estimating, Penman-Monteith method for PET and Muskingum method for channel routing. 

SWAT has an embedded automatic sensitivity, and calibration and uncertainty analysis tool. The sensitivity 
analysis method is a combination of Latin-Hypercube and One-factor-At-a-Time (LH-OAT) sampling that 
allows a global sensitivity analysis for a long list of parameters with only a limited number of model runs. 
SWAT has 26 streamflow, 6 sediment and 9 nutrient parameters. The LH-OAT sensitivity analysis was 
applied for streamflow (Q), Total Nitrogen (TN), Total Phosphorus (TP) and Total Suspended Solid (TSS) 
output variables at three sites in the study area for 1998-2008 periods.  

The LH-OAT sensitivity analysis provides a simple and quick way to assess parameter sensitivity for 
multiple variables across the study area. The output variables found to be most sensitive to 15 hydrologic 
parameters, and 13 sediment and nutrients parameters in the SWAT model. The results show that the 
hydrologic parameters dominate the highest parameter ranks. The results also show that water quality 
variables are potentially capable of contributing to the identification of water quantity parameters within the 
SWAT model, and a single parameter is correlated to multiple variables. Moreover, there were clear 
differences in ranking of a parameter among the three sites. This result has evidenced how the parameter 
importance depends on land use, topography and soil types, meaning that a generalization within a catchment 
is limited. Hence, justify the importance of multi-site parameterization 
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1. INTRODUCTION 

Public concern regarding the degradation of water quality due to nonpoint sources and point sources has 
driven policy regulators to scrutinize land management practices and examine how water quality conditions 
can be improved. Agricultural practices are commonly regarded as being sources of water and soil 
contamination (Sharpley, 1995). Land application of fertilizer/manure provides nutrients and organic matter 
that enhance crop growth and can improve soil physical properties. However, when applied in excess, runoff 
from overlands can result in the impairment of nearby water resources. Phosphorus (P) is a recognized 
contaminant that can cause adverse conditions in surface waters whereas nitrogen (N) is more important in 
marine systems (Sims et al., 1998). Environmental regulation has expedited the necessity of agricultural 
producers to design and implement more environmentally suitable practices. There is a need to identify 
critical nutrient and their loss/transport potentials. Catchment water quality models can simulate multiple 
catchment management scenarios that can help environmental policy managers make decisions that could 
ultimately reduce P and N loss from agricultural lands (Green and van Griensven, 2008). Models are 
inexpensive tools that can identify optimum catchment management practice scenarios for pollutant transport 
reduction. 

Catchment models that aim to describe water quality variables such as sediment fluxes, nutrients and other 
dissolved compounds that affect stream ecology need detailed rainfall–runoff process descriptions in time 
and space. Additionally, these models must account for a number of transformation processes. Therefore, 
continuous physics-based distributed models are better suited for the accurate simulation of spatial and 
temporal patterns in surface runoff, sediment, chemicals, and nutrients and their associated transport 
pathways (Borah and Bera, 2003). The increased complexity in such models is that they have more model 
parameters than simpler rainfall-runoff models. These parameters are involved with different processes of the 
catchment such as runoff, erosion, evaporation, groundwater and so on, and cannot be measured directly due 
to measurement limitations and scaling issues. These models also require significantly longer simulation 
times than equivalent rainfall runoff-models.  

Developing reliable physics-based catchment models and validating them on real-world catchment with 
measured and monitored data is challenging. In this regard, model calibration and uncertainty analysis help to 
evaluate the ability of the model to sufficiently predict streamflow and constituent yields for specific 
applications (White and Chaubey, 2005). Complexity in the calibration and validation process increases with 
the physics-based distributed parameter catchment models due to the large number of model parameters 
needed to achieve calibration, the difficulty associated with calibrating the model at more than one location 
within the catchment, and the ability to predict multiple catchment response variables (e.g. streamflow, 
sediment, nitrogen and phosphorus) (White and Chaubey, 2005). Therefore, sensitivity analysis methods are 
needed that can accommodate a large number of parameters while considering several output variables at 
more than one location within the catchment. Sensitivity analysis methods reducing the number of 
parameters to be adjusted during calibration are important for simplifying the use of these models (van 
Griensven et al., 2002). These methods identify parameters that do or do not have a significant influence on 
the model simulations of output variables. 

Currently, adoption of SWAT as a tool for predicting land use change impacts on water quality in the Yarra 
River catchment, Victoria (Australia) is being considered. SWAT is a promising model for long-term 
continuous simulation in predominantly agricultural catchments (Borah and Bera, 2003). Applications of 
physics-based water quality models like SWAT are limited in Australia, mainly because of data-poor 
environment. Information on erosion, soil properties or spatially referenced land use and water quality data is 
relatively sparse, complicating the development of water quality models (Letcher et al., 1999). Watson et al. 
(2003) used SWAT model to simulate only hydrology in Australian conditions. SWAT is a complex physics-
based distributed model with many parameters that can complicate calibration process. The model when 
includes multi-variable simultaneously at multi-site with multi-objective functions also introduces more 
complexity to the calibration process. Therefore, over-parameterization is a well-known and often described 
problem in such distributed model (van Griensven et al., 2006).  

The objective of this paper is to perform a sensitivity analysis for multiple variables (streamflow, sediment, 
nitrogen and phosphorus) at three sites on a SWAT model developed in the agricultural part of Yarra River 
catchment, Victoria (Australia) so that the model calibration process can be simplified for water quality 
analysis purposes. 
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2. MATERIALS AND METHODS 

2.1. Study Area 

The Yarra River located in Victoria, Australia is the source of Melbourne city’s high quality drinking water 
and supports a thrive of agricultural industries. The Yarra River catchment has an area of over 4000 km2 with 
21 percent natural vegetation, 57 percent agricultural and 22 percent urban land cover. The catchment has 
three distinct segments, namely: Upper, Middle and Lower Yarra segments based on land use activities 
(Figure 1). The Upper Yarra segment consists of mainly dense and extensive forested area. The Middle Yarra 
segment is mainly rural floodplains and valleys. The Lower Yarra segment is mainly urbanized floodplains, 
and has the poorest water quality. The annual rainfall of the Yarra River catchment varies from 
approximately 1,600 mm in the Upper Yarra to 600 mm in the Lower Yarra region (Das et al., 2011). Low 
flows occur from November to June. 

 

Figure 1. Location map of the Middle Yarra catchment 
The Middle Yarra segment covering a total area of about 1511 km2 was selected as the case study area 
(Figure 1), and will be referred to as Middle Yarra Catchment (MYC) for rest of the paper. The Yarra River 
catchment discharges the largest amount of contaminants, both in terms of total load and load per unit area in 
the Port Phillip Bay region (Melbourne Water and EPA Victoria, 2009). Intensive agricultural activities from 
the MYC contribute a significant amount of diffuse pollutants into the river (DSE, 2006). 

2.2. SWAT Model 

This study uses the ArcSWAT interface of the SWAT2005 model (Winchell et al., 2009). The SWAT model 
is a non-proprietary hydrologic/water quality tool developed by the United States Department of Agriculture-
Agriculture Research Service (Arnold et al., 1998). It has the capability to simulate the impact of land use 
management on water, sediment and agricultural-chemical yields in complex catchments with varying soils, 
land use and management conditions over long periods of time. The ability to simulate QUAL2E based in-
stream water quality dynamics is a definite strength of SWAT (Gassman et al., 2007).  

SWAT has an embedded automatic sensitivity, and calibration and uncertainty analysis tool. The sensitivity 
analysis method is a combination of Latin-Hypercube and One-factor-At-a-Time (LH-OAT) sampling that 
allows a global sensitivity analysis for a long list of parameters with only a limited number of model runs 
(van Griensven et al., 2006). This method combines the robustness of the Latin Hypercube sampling that 
ensures that the full range of all parameters has been sampled with the precision of an OAT design assuring 
that the changes in the output in each model run can be unambiguously attributed to the parameter that was 
changed. The auto-calibration and uncertainty analysis tool ParaSol is based on the global search algorithm 
SCE-UA. A comprehensive review of SWAT model can be found in Gassman et al. (2007). 
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2.3. Data Collection and Processing 

All necessary data types and their respective sources for the SWAT model setup and calibration are shown in 
Table 1. Input maps, and climate, streamflow and water quality monitoring stations are shown in Figure 2. 

Table 1. Data sources for the SWAT model

Data Source 
Digital Elevation Model 
(DEM) 

ASTER 30m GDEM, jointly developed by The Ministry of Economy, Trade, and Industry (METI) of 
Japan and the United States National Aeronautics and Space Administration (NASA), 
(http://asterweb.jpl.nasa.gov/gdem-wist.asp) 

Soil Atlas of Australian Soils from Australian Soil Resource Information System (ASRIS) developed by 
CSIRO and Department of Agriculture, Fisheries and Forestry (DAFF) (http://www.asris.csiro.au) 

Land use 50m grid raster data for the period of 1997 to May 2006 collected from Australian Bureau of 
Agricultural and Resource Economics and Sciences (ABARES) (http://adl.brs.gov.au/landuse) 

Climate 16 rainfall and 4 temperature (max and min), solar radiation, wind speed and relative humidity stations
data from SILO climate database (http://www.longpaddock.qld.gov.au/silo) and Bureau of Meteorology
(BoM) (http://www.bom.gov.au/climate/data/). 

Land use management Manure, fertilizer type and application rate, tillage practices, cropping seasons, and irrigation rate from 
Australian Bureau of Statistics (http://www.abs.gov.au), Department of Environment and Primary 
Industries (http://www.depi.vic.gov.au/) and Melbourne Water (http://www.melbournewater.com.au/) 

Streamflow and water quality Daily streamflow  and monthly water quality grab sample data collected for four sites at Warrandyte
(Site-3: outlet of the MYC), Healesville (Site-2), Woori Yallock (Site-1) and Millgrove (upstream inlet 
point) as shown in Figure 2 from Melbourne Water (http://www.melbournewater.com.au/) 

Soil classification for the Atlas of Australian Soils is based on the Factual Key. The Factual Key (Northcote, 
1979) was the most widely used soil classification scheme prior to the Australian Soil Classification (ASC) 
(Isbell, 2002). The soil names as shown in the map (Figure 2b) are as per the ASC system with dominant 
Principal Profile Form (PPF) in brackets as per the Factual Key. The dominant soil types in the catchment are 
Sodosol (about 54%) and Dermosol (about 35%). The soil properties (depth of soil layer, texture, moist bulk 
density, available water capacity, organic carbon content, saturated hydraulic conductivity, moist soil albedo, 
USLE equation soil erodibility factor and soil hydrologic group) were available for 2 layers of the soil. 

 

Figure 2. Spatial input maps and monitoring stations for SWAT model in the MYC 

Since SWAT has pre-defined land use types through which it creates link with land use map, the land use 
classes generated for the MYC were re-classified and made compatible with the requirements of the SWAT 
model. Figure 2c shows the detailed land use types with pasture covering around 32% of the MYC. Climate 
data were collected for 1980–2008 period. Rainfall data analysis shows that there is an abrupt drop in annual 
average rainfall from 1140mm (1980-1996) to 922mm (1997-2008) indicating one of the most severe 
droughts in the MYC. Monthly grab sample data of Total Suspended Solid (TSS), Total Nitrogen (TN) and 
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Total Phosphorus (TP) were available from the four sites (Table 1) for 1998-2008 periods along with 
streamflow (Q) data. The three sites as shown in Figure 2d were selected for multi-site calibrations. 
Streamflow and water quality data were also collected from the Millgrove site to add streamflow and 
constituent loads from the Upper Yarra into the MYC through the “upstream inlet point” (Figure 2d) in the 
SWAT model. Since the correlations between concentrations of TSS, TN, TP, and streamflow (TSS: 0.65-
0.76: TN: 0.71-0.78, and TP: 0.58-0.76,) were high and statistically significant (p<0.01), regression model 
LOADEST (Runkel et al., 2004) was used to estimate constituent loads for the SWAT model calibration (Das 
et al., 2011). The LOADEST model performed well in estimating the constituent loads with coefficients of 
determination (R2) for the regression models in LOADEST greater than 0.85. 

2.4. SWAT Model Setup and Sensitivity Analysis 

All spatial datasets and database input files for the model were organized and assembled following the 
guidelines of ArcSWAT interface. The MYC was delineated into 51 sub-catchments and 431 Hydrological 
Response Units (HRU), which are unique combinations of land use, soil type and slope. The main methods 
used in modeling the hydrologic processes were curve number (CN) method for runoff estimating, Penman-
Monteith method for PET and Muskingum method for channel routing considering in-stream nutrient 
transformations. The model was run from 1993-2008 with a “warmup” periods of 1993-1997. SWAT has 26 
streamflow, 6 sediment and 9 nutrient parameters as shown in Table 2. Each parameter has a default lower 
and upper boundary, and an initial value was assigned to each parameter during the model setup based on the 
catchment topography, soil, land use and climate. The initial values of the parameters to which model output 
variables are found to be sensitive, are modified during the calibration process while other parameters have 
been remained unchanged. 

The LH-OAT sensitivity analysis was performed for Q, TN, TP and TSS variables at the three sites in the 
MYC for 1998-2008 periods. During the sensitivity analysis, SWAT runs (p+1)*m times, where p is the 
number of parameters and m is the number of LH loops (default value of m=10). For each loop, a set of 
parameter values is selected such that a unique area of the parameter space is sampled. This given set of 
parameter values was used to run a baseline simulation for the unique area. Then, using OAT, a parameter 
was randomly selected, and its value was changed from the previous simulation by a user-defined percentage 
(default value 5%). SWAT is run on the new parameter set, and then a different parameter is randomly 
selected and varied. After all the parameters have been varied, the LH algorithm locates a new sampling area 
by changing all the parameters. Finally, the model ranked the parameters based on the objective function 
(Sum of the Square of the Residuals) of simulated and observed output variable monthly time series. The 
parameter producing the highest average percentage change in the objective function value is ranked as most 
sensitive. The detailed LH-OAT sensitivity analysis guidelines can be found on Van Liew and Veith (2010). 

Two types of sensitivity analysis were performed to justify correlations between a parameter and multiple 
predicted output variables in the MYC. The first analysis considers all the variables (Q, TSS, TN and TP) and 
all the parameters from Table 2 simultaneously to rank the parameter sensitivity globally in the MYC where 
the model runs 10*(41+1) = 420 times. The second analysis considers one output variable (e.g. Q), and its 
related parameters only at a time from Table 2 to rank the parameter sensitivity for each output variable. 

3. RESULTS AND DISCUSSION 

The global sensitivity ranks of all the parameters considering all variables (Q, TSS, TN and TP) 
simultaneously are shown in Table 2. The last column in Table 2 shows the lowest rank, and is used to assess 
global parameter sensitivity for the MYC. Global ranks 1 are categorized as ‘very important’, rank 2–8 as 
‘important’, rank 9–25 as ‘slightly important’ and rank 42 as ‘not important’ (van Griensven et al., 2006). 
The results for the MYC identified 4 ‘very important’ parameters that cover channel, runoff and groundwater 
processes, and thus involve the hydrology of the system. In addition, there were 17 ‘important’ parameters, 
11 ‘slightly important’ parameters and 9 parameters that did not cause any change to model output at all. 

The scattered appearance of the higher ranked parameters shows that the ranking depends on the variable and 
the location. But, some generalizations can be made such as the overall importance of channel processes 
(CH_N2, SPCON, and CH_K2), groundwater processes (RCHRG_DP) and runoff processes (SURLAG, CN2 and 
CANMX) in the MYC. This indicates that in-stream process has significant impact on water quality along 
with upland processes in the MYC. These results also show that the hydrologic parameters dominate the 
highest parameter ranks. Some hydrologic parameters, like SURLAG, appear almost only on the pollutants 
list while being relatively unimportant for the streamflow (highest rank 15). This means that water quality 
data are potentially capable of contributing to the identification of water quantity parameters within SWAT, 
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and a single parameter is correlated to multiple variables. Moreover, there are clear differences in ranking of 
a parameter among the three sites in the catchment. This result illustrates how parameter importance depends 
on land use, topography and soil types, meaning that a generalization within a catchment is limited. Hence, 
justify the importance of multi-site parameterization. 

In general, the second type sensitivity analysis (as mentioned in Section 2.4) shows that parameter ranks of 
individual variable are consistent with the parameter ranks when all variables are considered simultaneously. 
However, ALFA_BF got comparatively higher rank for streamflow in the second analysis. Also, where 
CH_EROD and SOL_NO3 parameters show no sensitivity in the first analysis, were sensitive in the second 
analysis. Finally, 15 hydrologic parameters (ALPHA_BF, CANMX, CH_K2, CH_N2, CN2, EPCO, ESCO, 
GW_DELAY, GW_REVAP, GWQMN, SLOPE, SOL_AWC, SOL_K, SOL_Z, SURLAG) and 13 sediment and 
nutrients parameters (CH_COV, CH_EROD, NPERCO, PHOSKD, PPERCO, RCHRG_DP, SOL_LABP, SOL_NO3, 
SOL_ORGN, SOL_ORGP, SPCON, SPEXP, USLE_P) were considered most sensitive for the SWAT model. 

Table 2. Sensitivity results for the parameters in the SWAT model for Q, TSS, TN and TP at the three sites 
in the MYC 

Parameter 
Q TSS TN TP Global 

Rank Site-1 Site-2 Site-3 Site-1 Site-2 Site-3 Site-1 Site-2 Site-3 Site-1 Site-2 Site-3 
1 CH_N2 1 1 1 2 1 1 2 1 1 3 1 1 1 
3 RCHRG_DP 2 4 7 5 6 3 1 3 2 16 22 16 1 
1 SURLAG 16 16 15 15 23 24 3 9 10 1 6 9 1 
2 SPCON 42 42 42 1 3 4 42 42 42 42 42 42 1 
1 CH_K2 14 2 10 12 2 9 16 2 15 10 2 8 2 
1 CN2 5 3 3 7 8 5 6 6 3 4 4 2 2 
1 CANMX 10 6 9 11 10 15 5 17 24 2 14 11 2 
2 CH_COV 42 42 42 23 4 2 42 42 42 42 42 42 2 
1 GWQMN 6 10 2 13 16 11 8 8 4 23 23 17 2 
1 ESCO 4 9 6 3 18 12 4 7 17 11 5 15 3 
1 GW_REVAP 3 14 12 8 9 22 9 15 20 24 42 25 3 
1 SOL_AWC 7 12 4 19 17 13 12 4 8 12 3 18 3 
2 USLE_P 42 18 17 17 19 8 17 12 5 7 8 3 3 
1 SLOPE 12 7 5 22 12 7 18 16 6 15 10 4 4 
2 SPEXP 42 42 42 4 5 10 42 42 42 42 42 42 4 
1 ALPHA_BF 8 5 14 6 7 6 10 5 11 5 7 5 5 
1 BIOMIX 21 42 42 21 21 20 13 23 7 8 12 6 6 
1 SOL_Z 9 15 11 9 13 18 7 13 13 6 11 13 6 
1 SLSUBBSN 22 42 42 25 25 21 19 20 9 17 16 7 7 
1 GW_DELAY 15 8 42 14 22 25 21 22 23 26 24 26 8 
1 SOL_K 11 13 8 10 11 16 22 14 16 20 17 20 8 
1 BLAI 13 11 13 20 14 19 11 10 22 9 9 14 9 
3 SOL_ORGP 42 42 42 42 42 42 27 21 25 19 15 10 10 
3 NPERCO 8 20 16 18 15 17 14 11 12 14 13 19 11 
3 SOL_LABP 42 42 42 42 42 42 25 42 14 18 19 12 12 
3 SOL_ORGN 19 42 18 16 20 24 15 19 18 13 18 22 13 
1 REVAPMN 17 42 42 26 42 42 20 42 42 28 42 42 17 
1 SOL_ALB 23 17 42 24 42 26 26 25 26 25 42 21 17 
3 PPERCO 42 42 42 42 42 42 28 18 19 27 21 23 18 
1 EPCO 20 19 19 27 24 23 23 26 27 21 26 27 19 
3 PHOSKD 42 42 42 42 42 42 24 24 21 22 20 24 20 
2 USLE_C 42 42 42 42 26 42 42 42 42 42 25 42 25 
2 CH_EROD 42 42 42 42 42 42 42 42 42 42 42 42 42 
1 SFTMP 42 42 42 42 42 42 42 42 42 42 42 42 42 
3 SHALLST_N 42 42 42 42 42 42 42 42 42 42 42 42 42 
1 SMFMN 42 42 42 42 42 42 42 42 42 42 42 42 42 
1 SMFMX 42 42 42 42 42 42 42 42 42 42 42 42 42 
1 SMTMP 42 42 42 42 42 42 42 42 42 42 42 42 42 
3 SOL_NO3 42 42 42 42 42 42 42 42 42 42 42 42 42 
1 TIMP 42 42 42 42 42 42 42 42 42 42 42 42 42 
1 TLAPS 42 42 42 42 42 42 42 42 42 42 42 42 42 

       1: Streamflow parameters,        2: Sediment parameters and          3: Nutrient parameters 

4. CONCLUSIONS 

The setup and sensitivity analysis of SWAT model in the data-poor environment of Yarra River catchment, 
Victoria (Australia) is discussed in this paper. All necessary data were collected from local authorities in 
Australia except DEM. In general, water quality and land use management data were most sparse. The data 
for the SWAT model were processed with ArcGIS interface and other techniques. 
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The LH-OAT sensitivity analysis provides a simple and quick way to assess parameter sensitivity for 
multiple variables across the MYC. 15 hydrologic parameters and 13 sediment and nutrients parameters were 
found most sensitive for the SWAT model. The results showed that the SWAT output variables were most 
sensitive to the hydrologic parameters. The results also showed that water quality variables were potentially 
capable of contributing to the identification of water quantity parameters within the SWAT model, and a 
single parameter was correlated to multiple variables. Moreover, there were clear differences in ranking of a 
parameter among the three sites. This result has evidenced how the parameter importance depends on land 
use, topography and soil types, meaning that a generalization within a catchment is limited. Hence, justify the 
importance of multi-site parameterization. 
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